Energy Trading in the Smart Stability Network
Loading...
Authors
Author (Corporation)
Publication date
2014
Typ of student thesis
Master
Course of study
Collections
Type
11 - Student thesis
Editors
Editor (Corporation)
Supervisor
Parent work
Special issue
DOI of the original publication
Link
Series
Series number
Volume
Issue / Number
Pages / Duration
Patent number
Publisher / Publishing institution
Hochschule für Wirtschaft FHNW
Place of publication / Event location
Olten
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
The current implementation of the electrical grid has not changed since the last 50 years and due to the increase of energy demand the stability of the electrical grid is strongly affected which can result in power cuts respectively blackouts, brownouts or poor quality. One of the main reasons of these issues is the current design of the electrical grid, which is designed for centralized power production in big power plants from where the customers are served with electrical energy. In the case that one of these power plans has an outage, the impact is huge because it could affect several major cities or worse, e.g. the Northeast blackout of 2003. This paper proposes an approach to improve the stability of the electrical grid through decentralized networks and energy trading. The idea is to decrease the deviation from the schedule of the power plant operators and to create an economic incentive for homeowners. This is achieved by tradable goods, which are traded in such a network. This paper presents a model of a decentralized network, which consists of several smart houses with data taken from real consumers. The model or rather trading process is implemented with the multi-‐ agent framework JADE that allows implementing a distributed network with different type of participants. The trading process works in a way that a leader is elected in the beginning of the process. Once the leader is elected, all other participants inform the leader in short time intervals about their energy demands and their offers. An offer corresponding here to a tradable good such as receiving energy from a photovoltaic system, storing energy in a battery or switching on a boiler. In each interval, respectively cycle, the leader calculates the deviation from the schedule according to the schedule and the energy demands of the participants. When the deviation from the schedule is greater than zero, the leader looks for the best offers to decrease the deviation. Hereby, a participant gets paid when the leader accepts its offer.
Keywords
Subject (DDC)
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Review
Open access category
License
Citation
Mettler, F. (2014). Energy Trading in the Smart Stability Network [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/39850