Optimization of multi-robot sumo fight simulation by a genetic algorithm to identify dominant robot capabilities
dc.contributor.author | Lehner, Joël Enrico | |
dc.contributor.author | Dornberger, Rolf | |
dc.contributor.author | Simic, Radovan | |
dc.contributor.author | Hanne, Thomas | |
dc.date.accessioned | 2024-04-24T06:26:35Z | |
dc.date.available | 2024-04-24T06:26:35Z | |
dc.date.issued | 2019 | |
dc.description.abstract | This paper analyzes the multirobot sumo fight simulation. This simulation is based on a computational model of several sumo fighters, which physically interact while trying to move the opponent out of the arena (lost fight). The problem is optimized using a genetic algorithm (GA), where the capabilities of not only one particular robot but of all robots simultaneously are improved. In this particular problem setup, the problem definition changes depending on the optimization path, because all robots also get better, competing against each other. The influence of different operators of the GA is investigated and compared. This paper raises the questions, which genetically controlled capabilities (e.g. size, speed) are dominant over time and how they can be identified by a sensitivity analysis using a GA. The results shed light on which parameters are dominant. This experiment typically opens up interesting fields of further research, especially about how to address optimization problems, where the optimization process influences the search space and how to eliminate the factor of randomness. | |
dc.event | 2019 IEEE Congress on Evolutionary Computation (CEC 2019) | |
dc.event.end | 2019-06-13 | |
dc.event.start | 2019-06-10 | |
dc.identifier.doi | 10.1109/CEC.2019.8790367 | |
dc.identifier.isbn | 978-1-7281-2153-6 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/42598 | |
dc.language.iso | en | |
dc.relation.ispartof | 2019 IEEE Congress on Evolutionary Computation (CEC 2019). Proceedings | |
dc.spatial | Wellington | |
dc.subject.ddc | 330 - Wirtschaft | |
dc.title | Optimization of multi-robot sumo fight simulation by a genetic algorithm to identify dominant robot capabilities | |
dc.type | 04B - Beitrag Konferenzschrift | |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
fhnw.openAccessCategory | Closed | |
fhnw.pagination | 490-496 | |
fhnw.publicationState | Published | |
relation.isAuthorOfPublication | eb7def7c-c050-4338-99d5-3b7e403f5a45 | |
relation.isAuthorOfPublication | 64196f63-c326-4e10-935d-6776cc91354c | |
relation.isAuthorOfPublication | 3c3a8426-e114-4279-82c3-8acfe15277c2 | |
relation.isAuthorOfPublication | 35d8348b-4dae-448a-af2a-4c5a4504da04 | |
relation.isAuthorOfPublication.latestForDiscovery | 35d8348b-4dae-448a-af2a-4c5a4504da04 |
Dateien
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 1.36 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: