Computational deconvolution of the dengue immune response complexity with identification of novel broadly neutralizing antibodies

dc.contributor.authorNatali, Eriberto Noel
dc.contributor.authorHorst, Alexander
dc.contributor.authorMeier, Patrick
dc.contributor.authorGreiff, Victor
dc.contributor.authorNuvolone, Mario
dc.contributor.authorBabrak, Lmar Marie
dc.contributor.authorDjordjevic, Kristina
dc.contributor.authorFink, Katja
dc.contributor.authorTraggiai, Elisabetta
dc.contributor.authorMiho, Enkelejda
dc.date.accessioned2024-10-18T13:05:58Z
dc.date.available2024-10-18T13:05:58Z
dc.date.issued2022-09-21
dc.description.abstractDengue virus poses a serious threat to global health as the causative agent of the dengue fever. Currently, there is no approved therapeutic, and broadly neutralizing antibodies recognizing all four serotypes may be an effective treatment. High-throughput immune repertoire sequencing and bioinformatic analysis enable in-depth understanding of the immune response in dengue infection. Here, we use these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences through investigation of antibody response in dengue. We observed challenging the immune system with dengue elicits the following signatures on the antibody repertoire: (i) an increase of the diversity in the CDR3 regions and the germline genes; (ii) a change in the architecture by eliciting power-law network distributions and enrichment in polar amino acids of the CDR3; (iii) an increase in the expression of transcription factors of the JNK/Fos pathways and ribosomal proteins. Moreover, our work demonstrates the applicability of computational methods and machine learning to high-throughput antibody repertoire sequencing datasets for neutralizing antibody candidate identification. Further investigation with antibody expression and functional assays is planned to validate the obtained results.
dc.eventPostdoc Network Meeting
dc.event.end2022-09-23
dc.event.start2022-09-21
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46906
dc.identifier.urihttps://doi.org/10.26041/fhnw-9932
dc.language.isoen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.spatialGruyères
dc.titleComputational deconvolution of the dengue immune response complexity with identification of novel broadly neutralizing antibodies
dc.type06 - Präsentation
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeNo peer review
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
relation.isAuthorOfPublication360cb962-ef17-4d00-a10d-79c3bde2a8d8
relation.isAuthorOfPublication3d39049f-ff63-4e50-949b-ee67f7dcb763
relation.isAuthorOfPublication7a0a9eb3-b6ad-4f1b-975a-a97ca952b5f5
relation.isAuthorOfPublication30aa6b4f-8d02-4f33-8551-6261e7383b23
relation.isAuthorOfPublication.latestForDiscovery360cb962-ef17-4d00-a10d-79c3bde2a8d8
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Poster_BPNM.pdf
Größe:
1.87 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: