Graph-based keyword spotting in historical manuscripts using Hausdorff edit distance

dc.contributor.authorAmeri, Mohammad Reza
dc.contributor.authorStauffer, Michael
dc.contributor.authorRiesen, Kaspar
dc.contributor.authorBui, Tien Dai
dc.contributor.authorFischer, Andreas
dc.contributor.authorFischer, Andreas
dc.date.accessioned2024-03-18T07:52:30Z
dc.date.available2024-03-18T07:52:30Z
dc.date.issued2019
dc.description.abstractKeyword spotting enables content-based retrieval of scanned historical manuscripts using search terms, which, in turn, facilitates the indexation in digital libraries. Recent approaches include graph-based representations that capture the complex structure of handwriting. However, the high representational power of graphs comes at the cost of high computational complexity for graph matching. In this article, we investigate the potential of Hausdorff edit distance (HED) for keyword spotting. It is an efficient quadratic-time approximation of the graph edit distance. In a comprehensive experimental evaluation with four types of handwriting graphs and four benchmark datasets (George Washington, Parzival, Botany, and Alvermann Konzilsprotokolle), we demonstrate a strong performance of the proposed HED-based method when compared with the state of the art, both, in terms of precision and speed.
dc.identifier.doi10.1016/j.patrec.2018.05.003
dc.identifier.issn0167-8655
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42432
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofPattern Recognition Letters
dc.subject.ddc330 - Wirtschaft
dc.titleGraph-based keyword spotting in historical manuscripts using Hausdorff edit distance
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume121
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination61-67
fhnw.publicationStatePublished
relation.isAuthorOfPublication52fd615b-a2fc-4ba1-8853-573e1b2a8d4b
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublicatione83eff11-b557-4fff-985e-1bbb1fd15e0c
relation.isAuthorOfPublication.latestForDiscovery52fd615b-a2fc-4ba1-8853-573e1b2a8d4b
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: