A discourse on the use of machine learning (ML) in personality psychology: Can we expect ML to predict questionnaire scores from idiographic text-based data?
| dc.contributor.author | Schreiber, Marc | |
| dc.contributor.author | Jenny, Gregor J. | |
| dc.contributor.author | Hürlimann, Manuela | |
| dc.contributor.author | Parfenova, Yuliya | |
| dc.contributor.author | von Däniken, Pius | |
| dc.contributor.author | Cieliebak, Mark | |
| dc.date.accessioned | 2025-12-03T08:24:20Z | |
| dc.date.issued | 2025-09-10 | |
| dc.identifier.doi | https://doi.org/10.1016/j.jrp.2025.104666 | |
| dc.identifier.issn | 0092-6566 | |
| dc.identifier.uri | https://irf.fhnw.ch/handle/11654/54289 | |
| dc.identifier.uri | https://doi.org/10.26041/fhnw-14450 | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.ispartof | Journal of Research in Personality | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 150 - Psychologie | |
| dc.title | A discourse on the use of machine learning (ML) in personality psychology: Can we expect ML to predict questionnaire scores from idiographic text-based data? | |
| dc.type | 01A - Beitrag in wissenschaftlicher Zeitschrift | |
| dc.volume | 119 | |
| dspace.entity.type | Publication | |
| fhnw.InventedHere | Yes | |
| fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
| fhnw.affiliation.hochschule | Hochschule für Angewandte Psychologie FHNW | |
| fhnw.affiliation.institut | Institut für Mentale und Organisationale Gesundheit | |
| fhnw.openAccessCategory | Hybrid | |
| fhnw.pagination | 104666 | |
| fhnw.publicationState | Published | |
| fhnw.strategicActionField | New Work | |
| relation.isAuthorOfPublication | cb494b85-d38a-464f-9214-0796e038e596 | |
| relation.isAuthorOfPublication.latestForDiscovery | cb494b85-d38a-464f-9214-0796e038e596 |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- Schreiber et al._2025.pdf
- Größe:
- 886.54 KB
- Format:
- Adobe Portable Document Format
Lizenzbündel
1 - 1 von 1
Lade...
- Name:
- license.txt
- Größe:
- 2.66 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: