Graphics-processor-unit-based parallelization of optimized baseline wander filtering algorithms for long-term electrocardiography
dc.contributor.author | Niederhauser, Thomas | |
dc.contributor.author | Wyss-Balmer, Thomas | |
dc.contributor.author | Haeberlin, Andreas | |
dc.contributor.author | Marisa, Thanks | |
dc.contributor.author | Wildhaber, Reto | |
dc.contributor.author | Goette, Josef | |
dc.contributor.author | Jacomet, Marcel | |
dc.contributor.author | Vogel, Rolf | |
dc.date.accessioned | 2024-08-13T10:06:13Z | |
dc.date.available | 2024-08-13T10:06:13Z | |
dc.date.issued | 2015 | |
dc.description.abstract | Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here, we present a graphics processor unit (GPU)-based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to autoregressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and four times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a seven-day high-resolution ECG is computed within less than 3 s. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced. | |
dc.identifier.doi | 10.1109/tbme.2015.2395456 | |
dc.identifier.issn | 0018-9294 | |
dc.identifier.issn | 1558-2531 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/46822 | |
dc.issue | 6 | |
dc.language.iso | en | |
dc.publisher | IEEE | |
dc.relation.ispartof | IEEE Transactions on Biomedical Engineering | |
dc.subject.ddc | 600 - Technik, Medizin, angewandte Wissenschaften | |
dc.title | Graphics-processor-unit-based parallelization of optimized baseline wander filtering algorithms for long-term electrocardiography | |
dc.type | 01A - Beitrag in wissenschaftlicher Zeitschrift | |
dc.volume | 62 | |
dspace.entity.type | Publication | |
fhnw.InventedHere | No | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Life Sciences FHNW | de_CH |
fhnw.affiliation.institut | Institut für Medizintechnik und Medizininformatik | de_CH |
fhnw.openAccessCategory | Closed | |
fhnw.pagination | 1576-1584 | |
fhnw.publicationState | Published | |
relation.isAuthorOfPublication | 66894b38-407a-46f1-9e66-f573a64bf357 | |
relation.isAuthorOfPublication.latestForDiscovery | 66894b38-407a-46f1-9e66-f573a64bf357 |
Dateien
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 2.66 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: