Graphics-processor-unit-based parallelization of optimized baseline wander filtering algorithms for long-term electrocardiography

dc.contributor.authorNiederhauser, Thomas
dc.contributor.authorWyss-Balmer, Thomas
dc.contributor.authorHaeberlin, Andreas
dc.contributor.authorMarisa, Thanks
dc.contributor.authorWildhaber, Reto
dc.contributor.authorGoette, Josef
dc.contributor.authorJacomet, Marcel
dc.contributor.authorVogel, Rolf
dc.date.accessioned2024-08-13T10:06:13Z
dc.date.available2024-08-13T10:06:13Z
dc.date.issued2015
dc.description.abstractLong-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here, we present a graphics processor unit (GPU)-based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to autoregressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and four times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a seven-day high-resolution ECG is computed within less than 3 s. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.
dc.identifier.doi10.1109/tbme.2015.2395456
dc.identifier.issn0018-9294
dc.identifier.issn1558-2531
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46822
dc.issue6
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartofIEEE Transactions on Biomedical Engineering
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleGraphics-processor-unit-based parallelization of optimized baseline wander filtering algorithms for long-term electrocardiography
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume62
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination1576-1584
fhnw.publicationStatePublished
relation.isAuthorOfPublication66894b38-407a-46f1-9e66-f573a64bf357
relation.isAuthorOfPublication.latestForDiscovery66894b38-407a-46f1-9e66-f573a64bf357
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: