Prospective artificial intelligence to dissect the dengue immune response and discover therapeutics

dc.accessRightsAnonymous*
dc.contributor.authorNatali, Eriberto
dc.contributor.authorBabrak, Lmar
dc.contributor.authorMiho, Enkelejda
dc.date.accessioned2022-03-01T13:24:07Z
dc.date.available2022-03-01T13:24:07Z
dc.date.issued2021-06-15
dc.description.abstractDengue virus (DENV) poses a serious threat to global health as the causative agent of dengue fever. The virus is endemic in more than 128 countries resulting in approximately 390 million infection cases each year. Currently, there is no approved therapeutic for treatment nor a fully efficacious vaccine. The development of therapeutics is confounded and hampered by the complexity of the immune response to DENV, in particular to sequential infection with different DENV serotypes (DENV1–5). Researchers have shown that the DENV envelope (E) antigen is primarily responsible for the interaction and subsequent invasion of host cells for all serotypes and can elicit neutralizing antibodies in humans. The advent of high-throughput sequencing and the rapid advancements in computational analysis of complex data, has provided tools for the deconvolution of the DENV immune response. Several types of complex statistical analyses, machine learning models and complex visualizations can be applied to begin answering questions about the B- and T-cell immune responses to multiple infections, antibody-dependent enhancement, identification of novel therapeutics and advance vaccine research.en_US
dc.identifier.doi10.3389/fimmu.2021.574411
dc.identifier.issn1664-3224
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33337
dc.identifier.urihttps://doi.org/10.26041/fhnw-4121
dc.language.isoen_USen_US
dc.publisherFrontiersen_US
dc.relation.ispartoffrontiers in immunologyen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/en_US
dc.subjectArtificial intelligenceen_US
dc.subjectDengueen_US
dc.subjectAntibody discoveryen_US
dc.subjectB-cell receptoren_US
dc.subjectVirusen_US
dc.subjectimmunotherapyen_US
dc.subjectMachine learningen_US
dc.titleProspective artificial intelligence to dissect the dengue immune response and discover therapeuticsen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciencesde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGolden_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublicationdef46f12-37a6-4c85-bba6-e2a63f9fb4b2
relation.isAuthorOfPublication05c03d68-06db-4815-9086-b9b3657d2d0c
relation.isAuthorOfPublication30aa6b4f-8d02-4f33-8551-6261e7383b23
relation.isAuthorOfPublication.latestForDiscovery05c03d68-06db-4815-9086-b9b3657d2d0c
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
fimmu-12-574411.pdf
Größe:
3.93 MB
Format:
Adobe Portable Document Format
Beschreibung: