Artificial neural networks to predict the apparent degree of supersaturation in supersaturated lipid-based formulations. A pilot study

dc.accessRightsAnonymous*
dc.contributor.authorBennett-Lenane, Harriett
dc.contributor.authorO'Shea, Joseph
dc.contributor.authorMurray, Jack
dc.contributor.authorIlie, Alexandra Roxana
dc.contributor.authorHolm, Rene
dc.contributor.authorKuentz, Martin
dc.contributor.authorGriffin, Brendan
dc.date.accessioned2022-03-28T11:46:13Z
dc.date.available2022-03-28T11:46:13Z
dc.date.issued2021-09-05
dc.description.abstractIn response to the increasing application of machine learning (ML) across many facets of pharmaceutical development, this pilot study investigated if ML, using artificial neural networks (ANNs), could predict the apparent degree of supersaturation (aDS) from two supersaturated LBFs (sLBFs). Accuracy was compared to partial least squares (PLS) regression models. Equilibrium solubility in Capmul MCM and Maisine CC was obtained for 21 poorly water-soluble drugs at ambient temperature and 60 °C to calculate the aDS ratio. These aDS ratios and drug descriptors were used to train the ML models. When compared, the ANNs outperformed PLS for both sLBFCapmulMC (r2 0.90 vs. 0.56) and sLBFMaisineLC (r2 0.83 vs. 0.62), displaying smaller root mean square errors (RMSEs) and residuals upon training and testing. Across all the models, the descriptors involving reactivity and electron density were most important for prediction. This pilot study showed that ML can be employed to predict the propensity for supersaturation in LBFs, but even larger datasets need to be evaluated to draw final conclusions.en_US
dc.identifier.doi10.3390/pharmaceutics13091398
dc.identifier.issn1999-4923
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33407
dc.identifier.urihttps://doi.org/10.26041/fhnw-4150
dc.issue9en_US
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.ispartofPharmaceuticsen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/en_US
dc.spatialBaselen_US
dc.subjectLipid-based drug deliveryen_US
dc.subjectComputational pharmaceuticsen_US
dc.subjectMachine learningen_US
dc.subjectSupersaturated lipid-based formulationsen_US
dc.titleArtificial neural networks to predict the apparent degree of supersaturation in supersaturated lipid-based formulations. A pilot studyen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume13en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Pharma Technologyde_CH
fhnw.openAccessCategoryGolden_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication68819448-8611-488b-87bc-1b1cf9a6a1b4
relation.isAuthorOfPublication.latestForDiscovery68819448-8611-488b-87bc-1b1cf9a6a1b4
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
pharmaceutics-13-01398.pdf
Größe:
1.62 MB
Format:
Adobe Portable Document Format
Beschreibung: