Naïve Bayes and named entity recognition for requirements mining in job postings

dc.contributor.authorWild, Simon
dc.contributor.authorParlar, Soyhan
dc.contributor.authorHanne, Thomas
dc.contributor.authorDornberger, Rolf
dc.date.accessioned2024-04-17T10:08:45Z
dc.date.available2024-04-17T10:08:45Z
dc.date.issued2021
dc.description.abstractThis paper analyses how the required skills in a job post can be extracted. With an automated extraction of skills from unstructured text, applicants could be more accurately matched and search engines could provide better recommendations. The problem is optimized by classifying the relevant parts of the description with a multinomial naïve Bayes model. The model identifies the section of the unstructured text in which the requirements are stated. Subsequently, a named entity recognition (NER) model extracts the required skills from the classified text. This approach minimizes the false positives since the data which is analyzed is already filtered. The results show that the naïve Bayes model classifies up to 99% of the sections correctly, and the NER model extracts 65% of the skills required for a position. The accuracy of the NER model is not sufficient to be used in production. On the validation set, the performance was insufficient. A more consistent labelling guideline would be needed and more data should be annotated to increase the performance.
dc.event2021 3rd International Conference on Natural Language Processing (ICNLP 2021)
dc.event.end2021-03-28
dc.event.start2021-03-26
dc.identifier.doi10.1109/ICNLP52887.2021.00032
dc.identifier.isbn978-1-6654-1411-1
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42936
dc.language.isoen
dc.relation.ispartof2021 3rd International Conference on Natural Language Processing. Proceedings
dc.spatialBejing
dc.subject.ddc330 - Wirtschaft
dc.titleNaïve Bayes and named entity recognition for requirements mining in job postings
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination155-161
fhnw.publicationStatePublished
relation.isAuthorOfPublication4c2e16b0-225a-4087-862a-b18369380bd4
relation.isAuthorOfPublication2b600b71-1924-46e6-93a5-cdc21f52f455
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublication64196f63-c326-4e10-935d-6776cc91354c
relation.isAuthorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: