Information Extraction from Financial Tables: Application and Evaluation of a Machine Learning Approach in Annual Reports

dc.contributor.authorDimmler, Hans-Rudolf
dc.contributor.mentorHanne, Thomas
dc.date.accessioned2025-12-15T13:39:13Z
dc.date.issued2025
dc.description.abstractIn recent years, specialized deep-learning models have demonstrated promising results in extracting table information from PDFs. In addition, multi-module solutions have been developed to process complex PDF documents and optimally align the extraction techniques to the different document components. Furthermore, Large Language Models (LLMs) have shown a comprehensive language understanding. However, the performance of these new possibilities has not yet been validated in an end-to-end process on a dataset of annual reports.
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54840
dc.language.isoen
dc.publisherHochschule für Wirtschaft FHNW
dc.spatialOlten
dc.subject.ddc330 - Wirtschaft
dc.titleInformation Extraction from Financial Tables: Application and Evaluation of a Machine Learning Approach in Annual Reports
dc.type11 - Studentische Arbeit
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.StudentsWorkTypeMaster
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutMaster of Sciencede_CH
relation.isMentorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isMentorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien