Iterative Bipartite Graph Edit Distance Approximation

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorRiesen, Kaspar
dc.contributor.authorDornberger, Rolf
dc.contributor.authorBunke, Horst
dc.date.accessioned2015-10-05T06:31:44Z
dc.date.available2015-10-05T06:31:44Z
dc.date.issued2014
dc.description.abstractOne of the major tasks in many applications in the field of document analysis is the computation of dissimilarities between two or more objects from a given problem domain. Hence, employing graphs as representation formalism evokes the need for powerful, fast and flexible graph based dissimilarity models. Graph edit distance is powerful and applicable to any kind of graphs but suffers from its high computational complexity. Recently, however, a novel framework for graph edit distance approximation has been introduced. While the run time of this novel procedure is very convincing, the precision of the approximated graph distances is dissatisfying in some cases. The present paper introduces a generalized version of the existing approximation framework using an iterative bipartite procedure. With empirical investigations on three real world data sets we show that our extension substantially improves the accuracy of the approximations while the run time is increased only linearly with the number of additional iterations.
dc.eventIEEE Computer Society 2014
dc.identifier.isbn978-1-4799-3244-3
dc.identifier.urihttp://hdl.handle.net/11654/8223
dc.language.isoen
dc.relation.ispartofDocument Analysis Systems
dc.spatialTours
dc.subject.ddc330 - Wirtschaftde
dc.titleIterative Bipartite Graph Edit Distance Approximation
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.pagination724-731
fhnw.publicationStatePublished
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublication64196f63-c326-4e10-935d-6776cc91354c
relation.isAuthorOfPublication.latestForDiscoveryd761e073-1612-4d22-8521-65c01c19f97a
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.94 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: