Optical investigation of sooting propensity of n-dodecane pilot/lean-premixed methane dual-fuel combustion in a rapid compression-expansion machine

Loading...
Thumbnail Image
Author (Corporation)
Publication date
03.04.2018
Typ of student thesis
Course of study
Type
01A - Journal article
Editors
Editor (Corporation)
Supervisor
Parent work
SAE International Journal of Engines
Special issue
DOI of the original publication
Link
Series
Series number
Volume
11
Issue / Number
6
Pages / Duration
Patent number
Publisher / Publishing institution
SAE
Place of publication / Event location
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
The sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine (RCEM) to achieve engine-relevant pressure and temperature conditions at the start of pilot injection. A Diesel injector with a 100 μm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in the presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature, and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous excited-state hydroxyl radical (OH*) chemiluminescence and Schlieren imaging. The sooting behavior of the flame has been characterized using the 2D-DBI imaging methodology. The apparent soot black-body temperature has been measured 1D resolved along the injector axis by applying an imaging spectrograph. Addition of methane into the air charge considerably prolongs the ignition delay with an increasing effect under less reactive conditions and with higher methane equivalence ratios. Therefore, the influence of methane on the formation of soot is twofold: in case of short pilot injection, the presence of methane was found to decrease the soot formation due to the leaner pilot fuel mixture at the time of ignition. For longer pilot fuel injections, methane enhances the soot production by decreasing oxygen availability and introducing additional carbon. In all cases, methane strongly defers the oxidation of soot due to the lower availability of oxygen.
Keywords
Project
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
1946-3944
1946-3936
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Published
Review
Peer review of the complete publication
Open access category
Closed
License
Citation
Srna, A., Bruneaux, G., von Rotz, B., Bombach, R., Herrmann, K., & Boulouchos, K. (2018). Optical investigation of sooting propensity of n-dodecane pilot/lean-premixed methane dual-fuel combustion in a rapid compression-expansion machine. SAE International Journal of Engines, 11(6). https://doi.org/10.4271/2018-01-0258