ICU Cockpit: a platform for collecting multimodal waveform data, AI-based computational disease modeling and real-time decision support in the intensive care unit

dc.accessRightsAnonymous*
dc.contributor.authorBoss, Jens Michael
dc.contributor.authorNarula, Gagan
dc.contributor.authorStraessle, Christian
dc.contributor.authorWillms, Jan
dc.contributor.authorSuter, Susanne
dc.contributor.authorBuehler, Christof
dc.contributor.authorMuroi, Carl
dc.contributor.authorMack, David Jule
dc.contributor.authorSeric, Marko
dc.contributor.authorBaumann, Daniel
dc.contributor.authorKeller, Emanuela
dc.contributor.authorAzzati, Jan
dc.contributor.authorBrodbeck, Dominique
dc.contributor.authorLüthy, Rahel
dc.date.accessioned2022-10-12T10:50:27Z
dc.date.available2022-10-12T10:50:27Z
dc.date.issued2022-05-13
dc.description.abstractICU Cockpit: a secure, fast, and scalable platform for collecting multimodal waveform data, online and historical data visualization, and online validation of algorithms in the intensive care unit. We present a network of software services that continuously stream waveforms from ICU beds to databases and a web-based user interface. Machine learning algorithms process the data streams and send outputs to the user interface. The architecture and capabilities of the platform are described. Since 2016, the platform has processed over 89 billion data points (N = 979 patients) from 200 signals (0.5–500 Hz) and laboratory analyses (once a day). We present an infrastructure-based framework for deploying and validating algorithms for critical care. The ICU Cockpit is a Big Data platform for critical care medicine, especially for multimodal waveform data. Uniquely, it allows algorithms to seamlessly integrate into the live data stream to produce clinical decision support and predictions in clinical practice.en_US
dc.identifier.doi10.1093/jamia/ocac064
dc.identifier.issn1067-5027
dc.identifier.issn1527-974X
dc.identifier.urihttps://doi.org/10.1093/jamia/ocac064
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33944
dc.issue7en_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.relation.ispartofJournal of the American Medical Informatics Associationen_US
dc.spatialOxforden_US
dc.subjectclinical research data platformen_US
dc.subjecthigh resolution waveformsen_US
dc.subjectdata dashboardsen_US
dc.subjectlivestream UIen_US
dc.subjectmachine learning integrationen_US
dc.subject.ddc500 - Naturwissenschaftenen_US
dc.titleICU Cockpit: a platform for collecting multimodal waveform data, AI-based computational disease modeling and real-time decision support in the intensive care uniten_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume29en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryCloseden_US
fhnw.pagination1286-1291en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication08ecccdf-5adc-46ef-baa8-1f912794204e
relation.isAuthorOfPublication25d5dae6-204b-4b35-b422-d856d3ba2796
relation.isAuthorOfPublication46b27190-143a-44d0-9fd0-3359b16f4d25
relation.isAuthorOfPublication.latestForDiscovery25d5dae6-204b-4b35-b422-d856d3ba2796
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: