Non-fungible token price prediction with multivariate LSTM neural networks

dc.contributor.authorBranny, Jérôme
dc.contributor.authorDornberger, Rolf
dc.contributor.authorHanne, Thomas
dc.date.accessioned2025-03-07T07:49:27Z
dc.date.issued2022
dc.description.abstractIn this paper, we investigate how to forecast Non-Fungible Token (NFT) sale prices by using multiple multivariate time series datasets containing features related to the NFT market space. We examined eight recent studies regarding the forecasting and valuation of NFTs and compared their most important findings. This laid the fundamental work for two separate machine learning prototypes based on Long Short-Term Memory (LSTM) which are able to forecast the sale price history of an individual NFT asset. Root Mean Squared Errors (RMSE) of 0.2975 and 0.24 were obtained which appears to be promising.
dc.eventSoft Computing & Machine Intelligence (ISCMI)
dc.identifier.doi10.1109/ISCMI56532.2022.10068442
dc.identifier.isbn979-8-3503-2088-6
dc.identifier.isbn979-8-3503-2087-9
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/48257
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2022 9th International Conference on Soft Computing & Machine Intelligence (ISCMI)
dc.spatialToronto
dc.subject.ddc330 - Wirtschaft
dc.titleNon-fungible token price prediction with multivariate LSTM neural networks
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination56-61
fhnw.publicationStatePublished
relation.isAuthorOfPublicationd31f0746-4741-48e9-8c40-4fcbe244b513
relation.isAuthorOfPublication64196f63-c326-4e10-935d-6776cc91354c
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublication.latestForDiscovery64196f63-c326-4e10-935d-6776cc91354c
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: