Improving Graph Edit Distance Approximation by Centrality Measures

dc.accessRightsAnonymous
dc.audienceWissenschaft
dc.contributor.authorRiesen, Kaspar
dc.contributor.authorBunke, Horst
dc.date.accessioned2015-10-05T15:41:03Z
dc.date.available2015-10-05T15:41:03Z
dc.date.issued2014-08-28T00:00:00Z
dc.description.abstractIn recent years the authors of the present paper introduced a powerful approximation fra or the graph edit distance problem. The basic idea of this approximation is to build a square cost matrix C = (cj), where each entry reflects the cost of a node substitution, deletion or insertion plus the matching cost arising from the local edge structure. Based on C an optimal assignment of the nodes and their local structure can be established in polynomial time (using, for instance, the Hungarian algorithm). Since this approach considers the local -- rather than the global -- structural properties of the graphs only, the obtained graph edit distance value is suboptimal in the sense of overestimating the true edit distance in general. The present paper pursues the idea of including topological information in the node labels in order to increase the amount of structural information available during the initial assignment process. In an experimental evaluation on three real world data sets a reduction of the overestimation can be observed while the run time is only moderately increased compared to our original framework.
dc.event22nd International Conference on Pattern Recognition, ICPR 2014
dc.event.end2014-08-28
dc.event.start2014-08-24
dc.identifier.doi10.1109/ICPR.2014.670
dc.identifier.isbn978-1-4799-5208-3
dc.identifier.urihttp://hdl.handle.net/11654/9007
dc.language.isoen_UK
dc.relation.ispartof22nd International Conference on Pattern Recognition
dc.spatialStockholm
dc.subject.ddc330 - Wirtschaft
dc.subject.ddc005 - Computer Programmierung, Programme und Daten
dc.titleImproving Graph Edit Distance Approximation by Centrality Measures
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereunbekannt
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.pagination3910-3914
fhnw.publicationStatePublished
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublication.latestForDiscoveryd761e073-1612-4d22-8521-65c01c19f97a
Dateien