Effects of noisy multiobjective test functions applied to evolutionary optimization algorithms

dc.contributor.authorRyter, Remo
dc.contributor.authorHanne, Thomas
dc.contributor.authorDornberger, Rolf
dc.date.accessioned2024-03-21T07:40:58Z
dc.date.available2024-03-21T07:40:58Z
dc.date.issued2020
dc.description.abstractIn this paper we study the effects of noise in multiobjective optimization problems. We consider a test function, which may be affected by noise with different strength and frequency of occurrence. To simplify the analysis, the noise is applied to only one of the objective functions, i.e. one of the objective functions is affected by additional random influences. Three different evolutionary algorithms for multiobjective problems are analyzed in this way: the Covariance Matrix Adaption Evolution Strategy (CMA-ES), the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), and the Particle Swarm Optimization (PSO). The results are presented and analyzed with respect to the resulting Pareto fronts and with respect to the distribution of variable values during the algorithm run. It can be observed that all three algorithms are basically able to derive suitable results. However, only PSO leads to a sparse Pareto front in case of noisy and non-noisy situations while CMA and NSGA-II perform similarly well. In some situations for NSGA-II and more clearly for CMA-ES specific patterns for the variable values (denoted as striae in this paper) can be observed which appear to be partly caused by the noise.
dc.identifier.doi10.12720/jait.11.3.128-134
dc.identifier.issn1798-2340
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42833
dc.identifier.urihttps://doi.org/10.26041/fhnw-6798
dc.issue3
dc.language.isoen
dc.publisherEngineering and Technology Publishing
dc.relation.ispartofJournal of Advances in Information Technology
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc330 - Wirtschaft
dc.titleEffects of noisy multiobjective test functions applied to evolutionary optimization algorithms
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume11
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination128-134
fhnw.publicationStatePublished
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublication64196f63-c326-4e10-935d-6776cc91354c
relation.isAuthorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Effects_of_noisy_multiobjective_test_functions_applied_to_evolutionary_optimization_algorithms.pdf
Größe:
2.21 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: