Data-Driven Chance Discovery

Kein Vorschaubild vorhanden
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2014
Typ der Arbeit
Master
Studiengang
Typ
11 - Studentische Arbeit
Herausgeber:innen
Herausgeber:in (Körperschaft)
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Hochschule für Wirtschaft FHNW
Verlagsort / Veranstaltungsort
Olten
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
There is more and more data produced by human beings, but also from automated sources: social media platforms, web blogs, search engines and other applications are just the tip of the ice berg. The same applies to data from businesses, there are data streams that offer market prices, feeds provide news articles, governments publish law regulation changes and journals supply the latest research trends. The outlook towards the internet of things, where every device is connected through the means of a network, enforces the assumption that the data amount is not going to stop rising any time soon. This food of data does not only cause IT technicians sleepless nights, more so the managers, who are in charge to overview, interpret and discover potential market demands based on the data. Because of the highly divers sources,in terms of origination, frequency and content it is complicated for decision makers to stay on top of all the latest developments. Furthermore the current top-down approaches of how to identify new potentials in that kind of data, makes it even more difficult. Enterprises and their managers attempt to handle this by delineation and create artificial boundaries to break the complexity of the content down. But what if there are changes outside these boundaries? The very likely answer is, that businesses are not aware of it and that is not a smart answer. Hence, in these times of data overload the current approaches of business to handle it are no longer feasible....
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Open Access-Status
Lizenz
Zitation
LUTZ, Jonas, 2014. Data-Driven Chance Discovery. Olten: Hochschule für Wirtschaft FHNW. Verfügbar unter: https://irf.fhnw.ch/handle/11654/39838