Gaussian guided self-adaptive wolf search algorithm

dc.contributor.authorSong, Qun
dc.contributor.authorFong, Simon
dc.contributor.authorDeb, Suash
dc.contributor.authorHanne, Thomas
dc.date.accessioned2024-03-21T10:33:02Z
dc.date.available2024-03-21T10:33:02Z
dc.date.issued2018
dc.description.abstractNowadays, swarm intelligence algorithms are becoming increasingly popular for solving many optimization problems. The Wolf Search Algorithm (WSA) is a contemporary semi-swarm intelligence algorithm designed to solve complex optimization problems and demonstrated its capability especially for large-scale problems. However, it still inherits a common weakness for other swarm intelligence algorithms: that its performance is heavily dependent on the chosen values of the control parameters. In 2016, we published the Self-Adaptive Wolf Search Algorithm (SAWSA), which offers a simple solution to the adaption problem. As a very simple schema, the original SAWSA adaption is based on random guesses, which is unstable and naive. In this paper, based on the SAWSA, we investigate the WSA search behaviour more deeply. A new parameter-guided updater, the Gaussian-guided parameter control mechanism based on information entropy theory, is proposed as an enhancement of the SAWSA. The heuristic updating function is improved. Simulation experiments for the new method denoted as the Gaussian-Guided Self-Adaptive Wolf Search Algorithm (GSAWSA) validate the increased performance of the improved version of WSA in comparison to its standard version and other prevalent swarm algorithms.
dc.identifier.doi10.3390/e20010037
dc.identifier.issn1099-4300
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42521
dc.identifier.urihttps://doi.org/10.26041/fhnw-6486
dc.issue1
dc.language.isoen
dc.publisherMDPI
dc.relation.ispartofEntropy
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialBasel
dc.subject.ddc330 - Wirtschaft
dc.titleGaussian guided self-adaptive wolf search algorithm
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume20
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
fhnw.specialIssueInformation theory in machine learning and data science
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Gaussian_guided_self-adaptive_wolf_search_algorithm.pdf
Größe:
8.86 MB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: