Signal analysis using local polynomial approximations

dc.contributor.authorWildhaber, Reto
dc.contributor.authorRen, Elizabeth
dc.contributor.authorWaldmann, Frederic
dc.contributor.authorLoeliger, Hans-Andrea
dc.date.accessioned2024-08-02T12:42:53Z
dc.date.available2024-08-02T12:42:53Z
dc.date.issued2020
dc.description.abstractLocal polynomial approximations represent a versatile feature space for time-domain signal analysis. The parameters of such polynomial approximations can be computed by efficient recursions using autonomous linear state space models and often allow analytical solutions for quantities of interest. The approach is illustrated by practical examples including the estimation of the delay difference between two acoustic signals and template matching in electrocardiogram signals with local variations in amplitude and time scale.
dc.event2020 28th European Signal Processing Conference (EUSIPCO)
dc.event.end2021-01-21
dc.event.start2021-01-18
dc.identifier.doi10.23919/eusipco47968.2020.9287801
dc.identifier.isbn978-9-0827-9705-3
dc.identifier.isbn978-9-08279-704-6
dc.identifier.isbn978-1-7281-5001-7
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46835
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2020 28th European Signal Processing Conference (EUSIPCO)
dc.spatialAmsterdam
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleSignal analysis using local polynomial approximations
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination2239-2243
fhnw.publicationStatePublished
relation.isAuthorOfPublication66894b38-407a-46f1-9e66-f573a64bf357
relation.isAuthorOfPublication.latestForDiscovery66894b38-407a-46f1-9e66-f573a64bf357
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: