Quantum logical controlled-NOT gate in a lithium niobate-on-insulator photonic quantum walk

dc.contributor.authorChapman, Robert J
dc.contributor.authorHäusler, Samuel
dc.contributor.authorFinco, Giovanni
dc.contributor.authorKaufmann, Fabian
dc.contributor.authorGrange, Rachel
dc.date.accessioned2024-01-10T08:46:24Z
dc.date.available2024-01-10T08:46:24Z
dc.date.issued2023-11-17
dc.description.abstractThe two-qubit controlled-NOT gate is one of the central entangling operations in quantum information technology. The controlled-NOT gate for single photon qubits is normally realized as a network of five individual beamsplitters on six optical modes. Quantum walks (QWs) are an alternative photonic architecture involving arrays of coupled waveguides, which have been successful for investigating condensed matter physics, however, have not yet been applied to quantum logical operations. Here, we engineer the tight-binding Hamiltonian of an array of lithium niobate-on-insulator waveguides to experimentally demonstrate the two-qubit controlled-NOT gate in a QW. We measure the two-qubit transfer matrix with 0.938 ± 0.003 fidelity, and we use the gate to generate entangled qubits with 0.945 ± 0.002 fidelity by preparing the control photon in a superposition state. Our results highlight a new application for QWs that use a compact multi-mode interaction region to realize large multi-component quantum circuits.
dc.identifier.doi10.1088/2058-9565/ad0a48
dc.identifier.issn2058-9565
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43555
dc.identifier.urihttps://doi.org/10.26041/fhnw-7517
dc.issue1
dc.language.isoen
dc.publisherInstitute of Physics Publishing
dc.relation.ispartofQuantum Science and Technology
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialBristol
dc.subjectQuantum computing
dc.subjectIntegrated photonics
dc.subject.ddc620 - Ingenieurwissenschaften und Maschinenbau
dc.titleQuantum logical controlled-NOT gate in a lithium niobate-on-insulator photonic quantum walk
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume9
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Technik und Umwelt FHNWde_CH
fhnw.affiliation.institutlnstitut für Sensorik und Elektronikde_CH
fhnw.openAccessCategoryHybrid
fhnw.publicationStatePublished
relation.isAuthorOfPublication258e0316-5cb9-4a16-926e-ddc66621a35a
relation.isAuthorOfPublication.latestForDiscovery258e0316-5cb9-4a16-926e-ddc66621a35a
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Chapman_2024_Quantum_Sci._Technol._9_015016.pdf
Größe:
1.4 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: