Using consumer behavior data to reduce energy consumption in smart homes
dc.accessRights | Anonymous | |
dc.audience | Science | |
dc.contributor.author | Schweizer, Daniel | |
dc.contributor.author | Zehnder, Michael | |
dc.contributor.author | Wache, Holger | |
dc.contributor.author | Zanatta, Danilo | |
dc.contributor.author | Rodriguez, Miguel | |
dc.contributor.author | Witschel, Hans Friedrich | |
dc.date.accessioned | 2017-03-22T13:35:36Z | |
dc.date.available | 2017-10-27T10:48:03Z | |
dc.date.issued | 2015 | |
dc.description.abstract | This paper discusses how usage patterns and preferences of inhabitants can be learned efficiently to allow smart homes to autonomously achieve energy savings. We propose a frequent sequential pattern mining algorithm suitable for real-life smart home event data. The performance of the proposed algorithm is compared to existing algorithms regarding completeness/correctness of the results, run times as well as memory consumption and elaborates on the shortcomings of the different solutions. | |
dc.identifier.uri | http://hdl.handle.net/11654/24620 | |
dc.identifier.uri | https://doi.org/10.26041/fhnw-1004 | |
dc.language.iso | en | |
dc.relation.ispartof | Proceedings of the IEEE 2015 International Conference on Machine Learning and Applications | |
dc.spatial | GuangZhou | en_US |
dc.subject | smart cities | en_US |
dc.subject | smar homes | en_US |
dc.subject | energy saving | en_US |
dc.subject | recommender systems | en_US |
dc.subject | association rules | en_US |
dc.subject | unsupervised learning | en_US |
dc.subject | internet of things | en_US |
dc.title | Using consumer behavior data to reduce energy consumption in smart homes | |
dc.type | 04B - Beitrag Konferenzschrift | |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | |
fhnw.IsStudentsWork | no | |
fhnw.PublishedSwitzerland | No | |
fhnw.ReviewType | Anonymous ex ante peer review of an abstract | |
fhnw.affiliation.hochschule | Hochschule für Wirtschaft | de_CH |
fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
fhnw.publicationState | Published | |
relation.isAuthorOfPublication | 9a5348f4-47b3-437d-a1f9-7cf66011e883 | |
relation.isAuthorOfPublication | 4f94a17c-9d05-433c-882f-68f062e0e6ae | |
relation.isAuthorOfPublication.latestForDiscovery | 4f94a17c-9d05-433c-882f-68f062e0e6ae |
Dateien
Originalbündel
1 - 1 von 1
Lade...
- Name:
- 05 icmla15.pdf
- Größe:
- 537.57 KB
- Format:
- Adobe Portable Document Format
- Beschreibung: