Using consumer behavior data to reduce energy consumption in smart homes

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorSchweizer, Daniel
dc.contributor.authorZehnder, Michael
dc.contributor.authorWache, Holger
dc.contributor.authorZanatta, Danilo
dc.contributor.authorRodriguez, Miguel
dc.contributor.authorWitschel, Hans Friedrich
dc.date.accessioned2017-03-22T13:35:36Z
dc.date.available2017-10-27T10:48:03Z
dc.date.issued2015
dc.description.abstractThis paper discusses how usage patterns and preferences of inhabitants can be learned efficiently to allow smart homes to autonomously achieve energy savings. We propose a frequent sequential pattern mining algorithm suitable for real-life smart home event data. The performance of the proposed algorithm is compared to existing algorithms regarding completeness/correctness of the results, run times as well as memory consumption and elaborates on the shortcomings of the different solutions.
dc.identifier.urihttp://hdl.handle.net/11654/24620
dc.identifier.urihttps://doi.org/10.26041/fhnw-1004
dc.language.isoen
dc.relation.ispartofProceedings of the IEEE 2015 International Conference on Machine Learning and Applications
dc.spatialGuangZhouen_US
dc.subjectsmart citiesen_US
dc.subjectsmar homesen_US
dc.subjectenergy savingen_US
dc.subjectrecommender systemsen_US
dc.subjectassociation rulesen_US
dc.subjectunsupervised learningen_US
dc.subjectinternet of thingsen_US
dc.titleUsing consumer behavior data to reduce energy consumption in smart homes
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of an abstract
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.publicationStatePublished
relation.isAuthorOfPublication9a5348f4-47b3-437d-a1f9-7cf66011e883
relation.isAuthorOfPublication4f94a17c-9d05-433c-882f-68f062e0e6ae
relation.isAuthorOfPublication.latestForDiscovery4f94a17c-9d05-433c-882f-68f062e0e6ae
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
05 icmla15.pdf
Größe:
537.57 KB
Format:
Adobe Portable Document Format
Beschreibung: