Extension and validation of a revised Cassie-Baxter model for tailor-made surface topography design and controlled wettability
Kein Vorschaubild vorhanden
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
05.05.2021
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Surface Topography: Metrology and Properties
Themenheft
DOI der Originalpublikation
Reihe / Serie
Reihennummer
Jahrgang / Band
9
Ausgabe / Nummer
2
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
IOP Publishing
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Predicting wettability accurately across various materials, surface topographies and wetting liquids is undeniably of paramount importance as it sets the foundations for technological developments related to improved life quality, energy saving and economization of resources, thereby reducing the environmental impact for recycling and reuse. In this work, we extend and validate our recently published wetting model, constituting a refinement of the original Cassie-Baxter model after consideration of realistic curved liquid-air interfaces. Our model enabled more meaningful contact angle predictions, while it captured the experimentally observed trends between contact angle and surface roughness. Here, the formalism of our wetting model is further extended to 3D surface topographies, whereas the validity of our model, in its entirety, is evaluated. To this end, a total of thirty-two experimentally engineered surfaces of various materials exhibiting single- and multilevel hierarchical topographies of increasing complexity were utilized. Our model predictions were consistently in remarkable agreement with experimental data (deviations of 3%–6%) and, in most cases, within statistical inaccuracies of the experimental measurements. Direct comparison between experiments and modeling results corroborated that surface topographies featuring re-entrant geometries promoted enhanced liquid-repellency, whereas hierarchical multilevel surface topographies enabled even more pronounced nonwetting behaviors. For the sinusoidal topography, consideration of a second superimposing topography level almost doubled the observed water contact angles, whereas addition of a third level brought about an extra 12.5% increase in water contact angle.
Schlagwörter
wettability, topography, Cassie-Baxter, wetting model, hydrophobic, omniphobic
Fachgebiet (DDC)
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Closed
Lizenz
Zitation
LEMPESIS, Nikolaos, Rudolf J. KOOPMANS, Ruth DÍEZ-AHEDO und Per Magnus KRISTIANSEN, 2021. Extension and validation of a revised Cassie-Baxter model for tailor-made surface topography design and controlled wettability. Surface Topography: Metrology and Properties. 5 Mai 2021. Bd. 9, Nr. 2. DOI 10.1088/2051-672X/abfa28. Verfügbar unter: https://irf.fhnw.ch/handle/11654/33206