End-to-End Table Extraction from Annual Reports using DL and NLP
Loading...
Authors
Author (Corporation)
Publication date
2024
Typ of student thesis
Master
Course of study
Collections
Type
11 - Student thesis
Editors
Editor (Corporation)
Supervisor
Parent work
Special issue
DOI of the original publication
Link
Series
Series number
Volume
Issue / Number
Pages / Duration
Patent number
Publisher / Publishing institution
Hochschule für Wirtschaft FHNW
Place of publication / Event location
Olten
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
Annual reports contain many important data and information – some of this data and information is included in tables. The extraction of these table data is associated with various challenges, including the unstructured nature of PDF documents and the wide variability of table representations. The aim of this master's thesis is to explore an innovative end-to-end solution that enables a user to interface with tabular data within annual reports in PDF format through natural language inputs.
The thesis addresses two main challenges: the automated extraction of table data from unstructured PDF documents, and interfacing this data through user inputs in the form of natural language questioning – for example, allowing the user to ask a question about the table content in the annual report like: "What was the profit in 2023?". This aims to make the process of information retrieval easier and more efficient.
Keywords
Subject (DDC)
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Review
Open access category
License
Citation
Mushkolaj, R. (2024). End-to-End Table Extraction from Annual Reports using DL and NLP [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/51126