Graph-based keyword spotting in historical documents using context-aware Hausdorff edit distance

dc.contributor.authorStauffer, Michael
dc.contributor.authorFischer, Andreas
dc.contributor.authorRiesen, Kaspar
dc.date.accessioned2024-04-24T06:28:15Z
dc.date.available2024-04-24T06:28:15Z
dc.date.issued2018
dc.description.abstractScanned handwritten historical documents are often not well accessible due to the limited feasibility of automatic full transcriptions. Thus, Keyword Spotting (KWS) has been proposed as an alternative to retrieve arbitrary query words from this kind of documents. In the present paper, word images are represented by means of graphs. That is, a graph is used to represent the inherent topological characteristics of handwriting. The actual keyword spotting is then based on matching a query graph with all document graphs. In particular, we make use of a fast graph matching algorithm that considers the contextual substructure of nodes. The motivation for this inclusion of node context is to increase the overall KWS accuracy. In an experimental evaluation on four historical documents, we show that the proposed procedure clearly outperforms diverse other template-based reference systems. Moreover, our novel framework keeps up or even outperforms many state-of-the-art learning-based KWS approaches.
dc.event13th IAPR International Workshop on Document Analysis Systems (DAS 2018)
dc.event.end2018-04-27
dc.event.start2018-04-24
dc.identifier.doi10.1109/DAS.2018.31
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42434
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof13th IAPR International Workshop on Document Analysis Systems. DAS 2018. Proceedings
dc.spatialNew York
dc.subject.ddc330 - Wirtschaft
dc.titleGraph-based keyword spotting in historical documents using context-aware Hausdorff edit distance
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination49-54
fhnw.publicationStatePublished
relation.isAuthorOfPublication52fd615b-a2fc-4ba1-8853-573e1b2a8d4b
relation.isAuthorOfPublicatione83eff11-b557-4fff-985e-1bbb1fd15e0c
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublication.latestForDiscovery52fd615b-a2fc-4ba1-8853-573e1b2a8d4b
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: