The role of low-volatility organic compounds in initial particle growth in the atmosphere

dc.contributor.authorTröstl, Jasmin
dc.contributor.authorChuang, Wayne K.
dc.contributor.authorGordon, Hamish
dc.contributor.authorHeinritzi, Martin
dc.contributor.authorYan, Chao
dc.contributor.authorMolteni, Ugo
dc.contributor.authorAhlm, Lars
dc.contributor.authorFrege, Carla
dc.contributor.authorBianchi, Federico
dc.contributor.authorWagner, Robert
dc.contributor.authorSimon, Mario
dc.contributor.authorLehtipalo, Katrianne
dc.contributor.authorWilliamson, Christina
dc.contributor.authorCraven, Jill S.
dc.contributor.authorDuplissy, Jonathan
dc.contributor.authorAdamov, Alexey
dc.contributor.authorAlmeida, Joao
dc.contributor.authorBernhammer, Anne-Kathrin
dc.contributor.authorBreitenlechner, Martin
dc.contributor.authorBrilke, Sophia
dc.contributor.authorDias, Antònio
dc.contributor.authorEhrhart, Sebastian
dc.contributor.authorFlagan, Richard C.
dc.contributor.authorFranchin, Alessandro
dc.contributor.authorFuchs, Claudia
dc.contributor.authorGuida, Roberto
dc.contributor.authorGysel, Martin
dc.contributor.authorHansel, Armin
dc.contributor.authorHoyle, Christopher R.
dc.contributor.authorJokinen, Tuija
dc.contributor.authorJunninen, Heikki
dc.contributor.authorKangasluoma, Juha
dc.contributor.authorKeskinen, Helmi
dc.contributor.authorKim, Jaeseok
dc.contributor.authorKrapf, Manuel
dc.contributor.authorKürten, Andreas
dc.contributor.authorLaaksonen, Ari
dc.contributor.authorLawler, Michael
dc.contributor.authorLeiminger, Markus
dc.contributor.authorMathot, Serge
dc.contributor.authorMöhler, Ottmar
dc.contributor.authorNieminen, Tuomo
dc.contributor.authorOnnela, Antti
dc.contributor.authorPetäjä, Tuukka
dc.contributor.authorPiel, Felix M.
dc.contributor.authorMiettinen, Pasi
dc.contributor.authorRissanen, Matti P.
dc.contributor.authorRondo, Linda
dc.contributor.authorSarnela, Nina
dc.contributor.authorSchobesberger, Siegfried
dc.contributor.authorSengupta, Kamalika
dc.contributor.authorSipilä, Mikko
dc.contributor.authorSmith, James N.
dc.contributor.authorSteiner, Gerhard
dc.contributor.authorTomè, Antònio
dc.contributor.authorVirtanen, Annele
dc.contributor.authorWagner, Andrea C.
dc.contributor.authorWeingartner, Ernest
dc.contributor.authorWimmer, Daniela
dc.contributor.authorWinkler, Paul M.
dc.contributor.authorYe, Penglin
dc.contributor.authorCarslaw, Kenneth S.
dc.contributor.authorCurtius, Joachim
dc.contributor.authorDommen, Josef
dc.contributor.authorKirkby, Jasper
dc.contributor.authorKulmala, Markku
dc.contributor.authorRiipinen, Ilona
dc.contributor.authorWorsnop, Douglas R.
dc.contributor.authorDonahue, Neil M.
dc.contributor.authorBaltensperger, Urs
dc.date.accessioned2024-02-08T08:52:41Z
dc.date.available2024-02-08T08:52:41Z
dc.date.issued2016
dc.description.abstractAbout half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday<jats:sup>1</jats:sup>. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres<jats:sup>2,3</jats:sup>. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles<jats:sup>4</jats:sup>, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth<jats:sup>5,6</jats:sup>, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer<jats:sup>7,8,9,10</jats:sup>. Although recent studies<jats:sup>11,12,13</jats:sup> predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon<jats:sup>2</jats:sup>, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory)<jats:sup>2,14</jats:sup>, has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown<jats:sup>15</jats:sup> that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10<jats:sup>−4.5</jats:sup> micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10<jats:sup>−4.5</jats:sup> to 10<jats:sup>−0.5</jats:sup> micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
dc.identifier.doi10.1038/nature18271
dc.identifier.issn0028-0836
dc.identifier.issn1476-4687
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/44253
dc.identifier.urihttps://doi.org/10.26041/fhnw-8070
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofNature
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialCham
dc.subject.ddc550 - Geowissenschaften
dc.titleThe role of low-volatility organic compounds in initial particle growth in the atmosphere
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume533
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Technik und Umwelt FHNWde_CH
fhnw.affiliation.institutlnstitut für Sensorik und Elektronikde_CH
fhnw.openAccessCategoryHybrid
fhnw.pagination527–531
fhnw.publicationStatePublished
relation.isAuthorOfPublication54997bb8-cf4a-4120-b0c7-f8e731e8eea1
relation.isAuthorOfPublication05dd9a19-7a24-4325-805a-2d121483b168
relation.isAuthorOfPublication.latestForDiscovery54997bb8-cf4a-4120-b0c7-f8e731e8eea1
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
nature18271.pdf
Größe:
11.13 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: