Machine learning for precision diagnostics of autoimmunity

dc.contributor.authorKruta, Jan
dc.contributor.authorCarapito, Raphael
dc.contributor.authorTrendelenburg, Marten
dc.contributor.authorMartin, Thierry
dc.contributor.authorRizzi, Marta
dc.contributor.authorVoll, Reinhard E.
dc.contributor.authorCavalli, Andrea
dc.contributor.authorNatali, Eriberto
dc.contributor.authorMeier, Patrick
dc.contributor.authorStawiski, Marc
dc.contributor.authorMosbacher, Johannes
dc.contributor.authorMollet, Annette
dc.contributor.authorSantoro, Aurelia
dc.contributor.authorCapri, Miriam
dc.contributor.authorGiampieri, Enrico
dc.contributor.authorSchkommodau, Erik
dc.contributor.authorMiho, Enkelejda
dc.date.accessioned2025-02-03T09:36:19Z
dc.date.issued2024-11-13
dc.description.abstractEarly and accurate diagnosis is crucial to prevent disease development and define therapeutic strategies. Due to predominantly unspecific symptoms, diagnosis of autoimmune diseases (AID) is notoriously challenging. Clinical decision support systems (CDSS) are a promising method with the potential to enhance and expedite precise diagnostics by physicians. However, due to the difficulties of integrating and encoding multi-omics data with clinical values, as well as a lack of standardization, such systems are often limited to certain data types. Accordingly, even sophisticated data models fall short when making accurate disease diagnoses and presenting data analyses in a user-friendly form. Therefore, the integration of various data types is not only an opportunity but also a competitive advantage for research and industry. We have developed an integration pipeline to enable the use of machine learning for patient classification based on multi-omics data in combination with clinical values and laboratory results. The application of our framework resulted in up to 96% prediction accuracy of autoimmune diseases with machine learning models. Our results deliver insights into autoimmune disease research and have the potential to be adapted for applications across disease conditions.
dc.identifier.doi10.1038/s41598-024-76093-7
dc.identifier.issn2045-2322
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/50017
dc.identifier.urihttps://doi.org/10.26041/fhnw-11866
dc.issue1
dc.language.isoen
dc.publisherNature
dc.relation.ispartofScientific Reports
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleMachine learning for precision diagnostics of autoimmunity
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume14
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination27848
fhnw.publicationStatePublished
relation.isAuthorOfPublication5e81af36-0718-47d0-b69c-68bd4467928a
relation.isAuthorOfPublication360cb962-ef17-4d00-a10d-79c3bde2a8d8
relation.isAuthorOfPublicationfc599931-4f21-4c25-ade0-dc0e885944ea
relation.isAuthorOfPublicationdc969cae-4775-4db5-a3c7-f4e32a96f1f2
relation.isAuthorOfPublication30aa6b4f-8d02-4f33-8551-6261e7383b23
relation.isAuthorOfPublication.latestForDiscovery5e81af36-0718-47d0-b69c-68bd4467928a
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
s41598-024-76093-7.pdf
Größe:
2.26 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: