Autonomous state space models for recursive signal estimation beyond least squares

dc.contributor.authorZalmai, Nour
dc.contributor.authorWildhaber, Reto
dc.contributor.authorLoeliger, Hans-Andrea
dc.date.accessioned2024-08-13T10:04:27Z
dc.date.available2024-08-13T10:04:27Z
dc.date.issued2017
dc.description.abstractThe paper addresses the problem of fitting, at any given time, a parameterized signal generated by an autonomous linear state space model (LSSM) to discrete-time observations. When the cost function is the squared error, the fitting can be accomplished based on efficient recursions. In this paper, the squared error cost is generalized to more advanced cost functions while preserving recursive computations: first, the standard sample-wise squared error is augmented with a sampledependent polynomial error; second, the sample-wise errors are localized by a window function that is itself described by an autonomous LSSM. It is further demonstrated how such a signal estimation can be extended to handle unknown additive and/or multiplicative interference. All these results rely on two facts: first, the correlation function between a given discrete-time signal and a LSSM signal can be computed by efficient recursions; second, the set of LSSM signals is a ring.
dc.event2017 25th European Signal Processing Conference (EUSIPCO)
dc.event.end2017-09-02
dc.event.start2017-08-28
dc.identifier.doi10.23919/eusipco.2017.8081225
dc.identifier.isbn978-0-9928626-7-1
dc.identifier.isbn978-0-9928626-8-8
dc.identifier.isbn978-1-5386-0751-0
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46832
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2017 25th European Signal Processing Conference (EUSIPCO)
dc.spatialNew York
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleAutonomous state space models for recursive signal estimation beyond least squares
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination341-345
fhnw.publicationStatePublished
relation.isAuthorOfPublication66894b38-407a-46f1-9e66-f573a64bf357
relation.isAuthorOfPublication.latestForDiscovery66894b38-407a-46f1-9e66-f573a64bf357
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: