FHNW Fachhochschule Nordwestschweiz
  • Startseite
  • Publikationen
  • Projekte
  • Studentische Arbeiten
  • de
  •  Login
Eintraganzeige 
  •   IRF Home
  • Hochschule für Life Sciences
  • Institut für Medizintechnik und Medizininformatik
  • Eintraganzeige
  • Hochschule für Life Sciences
  • Institut für Medizintechnik und Medizininformatik
  • Eintraganzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: A histological and µCT study in the rabbit

Autor/Autorin
de Wild, Michael
Schumacher, Ralf
Kyrill, Maier
Schkommodau, Erik
Thoma, Daniel
Bredell, Marius
Kruse, Astrid
Grätz, Klaus
Weber, Franz
Datum
2013
Metadata
Zur Langanzeige
Type
01 - Zeitschriftenartikel, Journalartikel oder Magazin
Zusammenfassung
The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or cell constructs to realize advanced bone tissue engineering strategies. Such implants could prove useful for mandibular reconstruction, spinal fusion, the treatment of extended long bone defects, or to fill in gaps created on autograft harvesting. The aim of this study was to determine the mechanical properties and potential of bone formation of light weight implants generated by selective laser melting (SLM). We mainly focused on osteoconduction, as this is a key feature in bone healing and could serve as a back-up for osteoinduction and cell transplantation strategies. To that end, defined implants were produced by SLM, and their surfaces were left untreated, sandblasted, or sandblasted/acid etched. In vivo bone formation with the different implants was tested throughout calvarial defects in rabbits and compared with untreated defects. Analysis by micro computed tomography (µCT) and histomorphometry revealed that all generatively produced porous Ti structures were well osseointegrated into the surrounding bone. The histomorphometric analysis revealed that bone formation was significantly increased in all implant-treated groups compared with untreated defects and significantly increased in sand blasted implants compared with untreated ones. Bone bridging was significantly increased in sand blasted acid-etched scaffolds. Therefore, scaffolds manufactured by SLM should be surface treated. Bone augmentation beyond the original bone margins was only seen in implant-treated defects, indicating an osteoconductive potential of the implants that could be utilized clinically for bone augmentation purposes. Therefore, designed porous, lightweight structures have potential for bone regeneration and augmentation purposes, especially when complex and patient-specific geometries are essential.
URI
http://hdl.handle.net/11654/10110
DOI der Originalausgabe
https://doi.org/10.1089/ten.TEA.2012.0753
Übergeordnetes Werk
Tissue Engineering Part A
Jahrgang
19
Ausgabe
23-24
Seiten
2645-54
Zitation

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutoren/AutorinnenTitelThemenDiese SammlungErscheinungsdatumAutoren/AutorinnenTitelThemen

Mein Benutzerkonto

EinloggenRegistrieren
Erweiterter Export: CSVErweiterter Export: RISErweiterter Export: BibTeX

Kontakt

Fachhochschule Nordwestschweiz FHNW
Vizepräsidium Hochschulentwicklung
Bahnhofstrasse 6
5210 Windisch

E-Mail: irf@fhnw.ch

Über das IRF

Das IRF ist das digitale Repositorium der Fachhochschule Nordwestschweiz FHNW. Es enthält Publikationen, studentische Arbeiten und Projekte.

Links

IRF Handbuch
Liste der IRF Power User
Feedbackformular

www.fhnw.ch | Impressum | Datenschutz | Urheberrecht | IRF-Reglement