Rhizobacteria and Plant Symbiosis in Heavy Metal Uptake and Its Implications for Soil Bioremediation

Vorschaubild nicht verfügbar
Autor:innen
Sobariu, Dana Luminita
Fertu, Daniela Ionela
Diaconu, Mariana
Pavel, Lucian Vasile
Hlihor, Raluca-Maria
Dragoi, Elena Niculina
Curteanu, Silvia
Gavrilescu, Maria
Autor:in (Körperschaft)
Publikationsdatum
2017
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
New Biotechnology
Themenheft
ICEEM08
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
39
Ausgabe / Nummer
Part A
Seiten / Dauer
125-134
Patentnummer
Verlag / Herausgebende Institution
Elsevier
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Certain species of plants can benefit from synergistic effects with plant growth-promoting rhizobacteria (PGPR) that improve plant growth and metal accumulation, mitigating toxic effects on plants and increasing their tolerance to heavy metals. The application of PGPR as biofertilizers and atmospheric nitrogen fixators contributes considerably to the intensification of the phytoremediation process. In this paper, we have built a system consisting of rhizospheric Azotobacter microbial populations and Lepidium sativum plants, growing in solutions containing heavy metals in various concentrations. We examined the ability of the organisms to grow in symbiosis so as to stimulate the plant growth and enhance its tolerance to Cr(VI) and Cd(II), to ultimately provide a reliable phytoremediation system. The study was developed at the laboratory level and, at this stage, does not assess the inherent interactions under real conditions occurring in contaminated fields with autochthonous microflora and under different pedoclimatic conditions and environmental stresses. Azotobacter sp. bacteria could indeed stimulate the average germination efficiency of Lepidium sativum by almost 7%, average root length by 22%, average stem length by 34% and dry biomass by 53%. The growth of L. sativum has been affected to a greater extent in Cd(II) solutions due its higher toxicity compared to that of Cr(VI). The reduced tolerance index (TI, %) indicated that plant growth in symbiosis with PGPR was however affected by heavy metal toxicity, while the tolerance of the plant to heavy metals was enhanced in the bacteria-plant system. A methodology based on artificial neural networks (ANNs) and differential evolution (DE), specifically a neuro-evolutionary approach, was applied to model germination rates, dry biomass and root/stem length and proving the robustness of the experimental data. The errors associated with all four variables are small and the correlation coefficients higher than 0.98, which indicate that the selected models can efficiently predict the experimental data.
Schlagwörter
Azotobacter sp., Cadmium, Chromium, Lepidium sativum, Rhizobacteria, Tolerance
Fachgebiet (DDC)
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1871-6784
1876-4347
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Lizenz
Zitation
SOBARIU, Dana Luminita, Daniela Ionela FERTU, Mariana DIACONU, Lucian Vasile PAVEL, Raluca-Maria HLIHOR, Elena Niculina DRAGOI, Silvia CURTEANU, Markus LENZ, Philippe CORVINI und Maria GAVRILESCU, 2017. Rhizobacteria and Plant Symbiosis in Heavy Metal Uptake and Its Implications for Soil Bioremediation. New Biotechnology. 2017. Bd. 39, Nr. Part A, S. 125–134. DOI 10.1016/j.nbt.2016.09.002. Verfügbar unter: http://hdl.handle.net/11654/25780