FHNW Fachhochschule Nordwestschweiz
  • Startseite
  • Publikationen
  • Projekte
  • Studentische Arbeiten
  • de
  •  Login
Eintraganzeige 
  •   IRF Home
  • Hochschule für Life Sciences
  • Institut für Medizintechnik und Medizininformatik
  • Eintraganzeige
  • Hochschule für Life Sciences
  • Institut für Medizintechnik und Medizininformatik
  • Eintraganzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lattice Microarchitecture for Bone Tissue Engineering from Calcium Phosphate Compared to Titanium

Autor/Autorin
Chen, Tse-Hsiang
Ghayor, Chafik
Siegenthaler, Barbara
Schuler, Felix
Rüegg, Jasmine
de Wild, Michael
Weber, Franz E.
Datum
10.2018
Metadata
Zur Langanzeige
Type
01 - Zeitschriftenartikel, Journalartikel oder Magazin
Zusammenfassung
Additive manufacturing of bone tissue engineering scaffolds will become a key element for personalized bone tissue engineering in the near future. Several additive manufacturing processes are based on extrusion where the deposition of the filament will result in a three-dimensional lattice structure. Recently, we studied diverse lattice structures for bone tissue engineering realized by laser sintering of titanium. In this work, we used lithography-based ceramic manufacturing of lattice structures to produce scaffolds from tricalcium phosphates (TCP) and compared them in vivo to congruent titanium scaffolds manufactured with the identical computer-aided design data to look for material-based differences in bony healing. The results show that, during a 4-week period in a noncritical-size defect in a rabbit calvarium, both scaffolds with the identical microarchitecture performed equally well in terms of bony regeneration and bony bridging of the defect. A significant increase in both parameters could only be achieved when the TCP-based scaffolds were doped with bone morphogenetic protein-2. In a critical-size defect in the calvarial bone of rabbits, however, the titanium scaffold performed significantly better than the TCP-based scaffold, most likely due to its higher mechanical stability. We conclude that titanium and TCP-based scaffolds of the same microarchitecture perform equally well in terms of bone regeneration, provided the microarchitecture meets the mechanical demand at the site of implantation.
Link
https://www.ncbi.nlm.nih.gov/pubmed/29999466
URI
http://hdl.handle.net/11654/26959
DOI der Originalausgabe
https://doi.org/10.1089/ten.TEA.2018.0014
Übergeordnetes Werk
Tissue Engineering. Part A
Jahrgang
24
Ausgabe
19-20
Zitation

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutoren/AutorinnenTitelThemenDiese SammlungErscheinungsdatumAutoren/AutorinnenTitelThemen

Mein Benutzerkonto

EinloggenRegistrieren
Erweiterter Export: CSVErweiterter Export: RISErweiterter Export: BibTeX

Kontakt

Fachhochschule Nordwestschweiz FHNW
Vizepräsidium Hochschulentwicklung
Bahnhofstrasse 6
5210 Windisch

E-Mail: irf@fhnw.ch

Über das IRF

Das IRF ist das digitale Repositorium der Fachhochschule Nordwestschweiz FHNW. Es enthält Publikationen, studentische Arbeiten und Projekte.

Links

IRF Handbuch
Liste der IRF Power User
Feedbackformular

www.fhnw.ch | Impressum | Datenschutz | Urheberrecht | IRF-Reglement