Lattice Microarchitecture for Bone Tissue Engineering from Calcium Phosphate Compared to Titanium

Vorschaubild nicht verfügbar
Autor:innen
Chen, Tse-Hsiang
Ghayor, Chafik
Siegenthaler, Barbara
Rüegg, Jasmine
Weber, Franz E.
Autor:in (Körperschaft)
Publikationsdatum
10/2018
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Tissue Engineering. Part A
Themenheft
Reihe / Serie
Reihennummer
Jahrgang / Band
24
Ausgabe / Nummer
19-20
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Mary Ann Liebert
Verlagsort / Veranstaltungsort
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Additive manufacturing of bone tissue engineering scaffolds will become a key element for personalized bone tissue engineering in the near future. Several additive manufacturing processes are based on extrusion where the deposition of the filament will result in a three-dimensional lattice structure. Recently, we studied diverse lattice structures for bone tissue engineering realized by laser sintering of titanium. In this work, we used lithography-based ceramic manufacturing of lattice structures to produce scaffolds from tricalcium phosphates (TCP) and compared them in vivo to congruent titanium scaffolds manufactured with the identical computer-aided design data to look for material-based differences in bony healing. The results show that, during a 4-week period in a noncritical-size defect in a rabbit calvarium, both scaffolds with the identical microarchitecture performed equally well in terms of bony regeneration and bony bridging of the defect. A significant increase in both parameters could only be achieved when the TCP-based scaffolds were doped with bone morphogenetic protein-2. In a critical-size defect in the calvarial bone of rabbits, however, the titanium scaffold performed significantly better than the TCP-based scaffold, most likely due to its higher mechanical stability. We conclude that titanium and TCP-based scaffolds of the same microarchitecture perform equally well in terms of bone regeneration, provided the microarchitecture meets the mechanical demand at the site of implantation.
Schlagwörter
additive manufacturing, bone regeneration, bone repair, calcium phosphate, lattice architecture, litography, osteoconduction, titanium
Fachgebiet (DDC)
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1937-335X
1937-3341
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Lizenz
Zitation
CHEN, Tse-Hsiang, Chafik GHAYOR, Barbara SIEGENTHALER, Felix SCHULER, Jasmine RÜEGG, Michael DE WILD und Franz E. WEBER, 2018. Lattice Microarchitecture for Bone Tissue Engineering from Calcium Phosphate Compared to Titanium. Tissue Engineering. Part A. Oktober 2018. Bd. 24, Nr. 19-20. DOI 10.1089/ten.TEA.2018.0014. Verfügbar unter: http://hdl.handle.net/11654/26959