Meyer, Jonas

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Meyer
Vorname
Jonas
Name
Meyer, Jonas

Suchergebnisse

Gerade angezeigt 1 - 5 von 5
  • Vorschaubild
    Publikation
    AI-based 3D detection of parked vehicles on a mobile mapping platform using edge computing
    (2022) Meyer, Jonas; Blaser, Stefan; Nebiker, Stephan
    In this paper we present an edge-based hardware and software framework for the 3D detection and mapping of parked vehicles on a mobile mapping platform for the use case of on-street parking statistics. First, we investigate different point cloud-based 3D object detection methods on our extremely dense and noisy depth maps obtained from low-cost RGB-D sensors to find a suitable object detector and determine the optimal preparation of our data. We then retrain the chosen object detector to detect all types of vehicles, rather than standard cars only. Finally, we design and develop a software framework integrating the newly trained object detector. By repeating the parking statistics of our previous work (Nebiker et al., 2021), our software is tested regarding the detection accuracy. With our edge-based framework, we achieve a precision and recall of 100% and 98% respectively on any parking configuration and vehicle type, outperforming all other known work on on-street parking statistics. Furthermore, our software is evaluated in terms of processing speed and volume of generated data. While the processing speed reaches only 1.9 frames per second due to limited computing resources, the amount of data generated is just 0.25 KB per frame.
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Outdoor mobile mapping and AI-based 3D object detection with low-cost RGB-D cameras. The use case of on-street parking statistics
    (MDPI, 2021) Nebiker, Stephan; Meyer, Jonas; Blaser, Stefan; Ammann, Manuela; Rhyner, Severin Eric
    A successful application of low-cost 3D cameras in combination with artificial intelligence (AI)-based 3D object detection algorithms to outdoor mobile mapping would offer great potential for numerous mapping, asset inventory, and change detection tasks in the context of smart cities. This paper presents a mobile mapping system mounted on an electric tricycle and a procedure for creating on-street parking statistics, which allow government agencies and policy makers to verify and adjust parking policies in different city districts. Our method combines georeferenced red-green-blue-depth (RGB-D) imagery from two low-cost 3D cameras with state-of-the-art 3D object detection algorithms for extracting and mapping parked vehicles. Our investigations demonstrate the suitability of the latest generation of low-cost 3D cameras for real-world outdoor applications with respect to supported ranges, depth measurement accuracy, and robustness under varying lighting conditions. In an evaluation of suitable algorithms for detecting vehicles in the noisy and often incomplete 3D point clouds from RGB-D cameras, the 3D object detection network PointRCNN, which extends region-based convolutional neural networks (R-CNNs) to 3D point clouds, clearly outperformed all other candidates. The results of a mapping mission with 313 parking spaces show that our method is capable of reliably detecting parked cars with a precision of 100% and a recall of 97%. It can be applied to unslotted and slotted parking and different parking types including parallel, perpendicular, and angle parking.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Open urban and forest datasets from a high-performance mobile mapping backpack. A contribution for advancing the creation of digital city twins
    (International Society of Photogrammetry and Remote Sensing, 2021) Blaser, Stefan; Meyer, Jonas; Nebiker, Stephan
    With this contribution, we describe and publish two high-quality street-level datasets, captured with a portable high-performance Mobile Mapping System (MMS). The datasets will be freely available for scientific use. Both datasets, from a city centre and a forest represent area-wide street-level reality captures which can be used e.g. for establishing cloud-based frameworks for infrastructure management as well as for smart city and forestry applications. The quality of these data sets has been thoroughly evaluated and demonstrated. For example, georeferencing accuracies in the centimetre range using these datasets in combination with image-based georeferencing have been achieved. Both high-quality multi sensor system street-level datasets are suitable for evaluating and improving methods for multiple tasks related to high-precision 3D reality capture and the creation of digital twins. Potential applications range from localization and georeferencing, dense image matching and 3D reconstruction to combined methods such as simultaneous localization and mapping and structure-from-motion as well as classification and scene interpretation. Our dataset is available online at: https://www.fhnw.ch/habg/bimage-datasets
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Long-term visual localization in large scale urban environments exploiting street level imagery
    (Copernicus, 2020) Meyer, Jonas; Rettenmund, Daniel; Nebiker, Stephan
    In this paper, we present our approach for robust long-term visual localization in large scale urban environments exploiting street level imagery. Our approach consists of a 2D-image based localization using image retrieval (NetVLAD) to select reference images. This is followed by a 3D-structure based localization with a robust image matcher (DenseSfM) for accurate pose estimation. This visual localization approach is evaluated by means of the ‘Sun’ subset of the RobotCar seasons dataset, which is part of the Visual Localization benchmark. As the results on the RobotCar benchmark dataset are nearly on par with the top ranked approaches, we focused our investigations on reproducibility and performance with own data. For this purpose, we created a dataset with street-level imagery. In order to have independent reference and query images, we used a road-based and a tram-based mapping campaign with a time difference of four years. The approximately 90% successfully oriented images of both datasets are a good indicator for the robustness of our approach. With about 50% success rate, every second image could be localized with a position accuracy better than 0.25 m and a rotation accuracy better than 2°.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Centimetre-accuracy in forests and urban canyons. Combining a high-performance image-based mobile mapping backpack with new georeferencing methods
    (Copernicus, 2020) Blaser, S.; Meyer, Jonas; Nebiker, Stephan; Fricker, L.; Weber, D.
    Advances in digitalization technologies lead to rapid and massive changes in infrastructure management. New collaborative processes and workflows require detailed, accurate and up-to-date 3D geodata. Image-based web services with 3D measurement functionality, for example, transfer dangerous and costly inspection and measurement tasks from the field to the office workplace. In this contribution, we introduced an image-based backpack mobile mapping system and new georeferencing methods for capture previously inaccessible outdoor locations. We carried out large-scale performance investigations at two different test sites located in a city centre and in a forest area. We compared the performance of direct, SLAM-based and image-based georeferencing under demanding real-world conditions. Both test sites include areas with restricted GNSS reception, poor illumination, and uniform or ambiguous geometry, which create major challenges for reliable and accurate georeferencing. In our comparison of georeferencing methods, image-based georeferencing improved the median precision of coordinate measurement over direct georeferencing by a factor of 10–15 to 3 mm. Image-based georeferencing also showed a superior performance in terms of absolute accuracies with results in the range from 4.3 cm to 13.2 cm. Our investigations showed a great potential for complementing 3D image-based geospatial web-services of cities as well as for creating such web services for forest applications. In addition, such accurately georeferenced 3D imagery has an enormous potential for future visual localization and augmented reality applications.
    01A - Beitrag in wissenschaftlicher Zeitschrift