Outdoor mobile mapping and AI-based 3D object detection with low-cost RGB-D cameras. The use case of on-street parking statistics

dc.accessRightsAnonymous*
dc.contributor.authorNebiker, Stephan
dc.contributor.authorMeyer, Jonas
dc.contributor.authorBlaser, Stefan
dc.contributor.authorAmmann, Manuela
dc.contributor.authorRhyner, Severin
dc.date.accessioned2023-02-17T12:19:21Z
dc.date.available2023-02-17T12:19:21Z
dc.date.issued2021-08-05
dc.description.abstractA successful application of low-cost 3D cameras in combination with artificial intelligence (AI)-based 3D object detection algorithms to outdoor mobile mapping would offer great potential for numerous mapping, asset inventory, and change detection tasks in the context of smart cities. This paper presents a mobile mapping system mounted on an electric tricycle and a procedure for creating on-street parking statistics, which allow government agencies and policy makers to verify and adjust parking policies in different city districts. Our method combines georeferenced red-green-blue-depth (RGB-D) imagery from two low-cost 3D cameras with state-of-the-art 3D object detection algorithms for extracting and mapping parked vehicles. Our investigations demonstrate the suitability of the latest generation of low-cost 3D cameras for real-world outdoor applications with respect to supported ranges, depth measurement accuracy, and robustness under varying lighting conditions. In an evaluation of suitable algorithms for detecting vehicles in the noisy and often incomplete 3D point clouds from RGB-D cameras, the 3D object detection network PointRCNN, which extends region-based convolutional neural networks (R-CNNs) to 3D point clouds, clearly outperformed all other candidates. The results of a mapping mission with 313 parking spaces show that our method is capable of reliably detecting parked cars with a precision of 100% and a recall of 97%. It can be applied to unslotted and slotted parking and different parking types including parallel, perpendicular, and angle parking.en_US
dc.description.urihttps://www.mdpi.com/2072-4292/13/16/3099en_US
dc.identifier.doi10.3390/rs13163099
dc.identifier.issn0034-4257
dc.identifier.issn1879-0704
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/34635.1
dc.issue16en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofRemote Sensingen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.spatialBaselen_US
dc.subjectParking statisticsen_US
dc.subjectVehicle detectionen_US
dc.subjectMobile mappingen_US
dc.subjectRobot operating systemen_US
dc.subject3D cameraen_US
dc.subjectRGB-Den_US
dc.subjectPerformance evaluationen_US
dc.subjectConvolutional neural networksen_US
dc.subjectSmart cityen_US
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaftenen_US
dc.titleOutdoor mobile mapping and AI-based 3D object detection with low-cost RGB-D cameras. The use case of on-street parking statisticsen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume13en_US
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.openAccessCategoryGolden_US
fhnw.publicationStatePublisheden_US
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung:

Versionsgeschichte

Gerade angezeigt 1 - 1 von 1
VersionDatumZusammenfassung
1*
2023-02-17 12:19:21
* Ausgewählte Version