Auflistung nach Autor:in "Braun-Fahrländer, Charlotte"
Gerade angezeigt 1 - 4 von 4
- Treffer pro Seite
- Sortieroptionen
Publikation Decline of Ambient Air Pollution Levels and Improved Respiratory Health in Swiss Children(National Institute of Environmental Health Sciences, 11/2005) Bayer-Oglesby, Lucy; Grize, Leticia; Gassner, Markus; Takken-Sahli, Kathy; Sennhauser, Felix H.; Neu, Urs; Schindler, Christian; Braun-Fahrländer, CharlotteThe causality of observed associations between air pollution and respiratory health in children is still subject to debate. If reduced air pollution exposure resulted in improved respiratory health of children, this would argue in favor of a causal relation. We investigated whether a rather moderate decline of air pollution levels in the 1990s in Switzerland was associated with a reduction in respiratory symptoms and diseases in school children. In nine Swiss communities, 9,591 children participated in cross-sectional health assessments between 1992 and 2001. Their parents completed identical questionnaires on health status and covariates. We assigned to each child an estimate of regional particles with an aerodynamic diameter < 10 μg/m3 (PM10) and determined change in PM10 since the first survey. Adjusted for socioeconomic, health-related, and indoor factors, declining PM10 was associated in logistic regression models with declining prevalence of chronic cough [odds ratio (OR) per 10-μg/m3 decline = 0.65, 95% confidence interval (CI), 0.54–0.79], bronchitis (OR = 0.66; 95% CI, 0.55–0.80), common cold (OR = 0.78; 95% CI, 0.68–0.89), nocturnal dry cough (OR = 0.70; 95% CI, 0.60–0.83), and conjunctivitis symptoms (OR = 0.81; 95% CI, 0.70–0.95). Changes in prevalence of sneezing during pollen season, asthma, and hay fever were not associated with the PM10 reduction. Our findings show that the reduction of air pollution exposures contributes to improved respiratory health in children. No threshold of adverse effects of PM10 was apparent because we observed the beneficial effects for relatively small changes of rather moderate air pollution levels. Current air pollution levels in Switzerland still exceed limit values of the Swiss Clean Air Act; thus, children’s health can be improved further.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Living near main streets and respiratory symptoms in adults. the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults(Oxford University Press, 10.10.2006) Bayer-Oglesby, Lucy; Schindler, Christian; Hazenkamp-von Arx, Marianne E.; Braun-Fahrländer, Charlotte; Keidel, Dirk; Rapp, Regula; Künzli, Nino; Braendli, Otto; Burdet, Luc; Sally Liu, L-J; Leuenberger, Philippe; Ackermann-Liebrich, UrsulaThe Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA), conducted in 1991 (SAPALDIA 1) in eight areas among 9,651 randomly selected adults aged 18-60 years, reported associations among the prevalence of respiratory symptoms, nitrogen dioxide, and particles with an aerodynamic diameter of less than 10 microg/m3. Later, 8,047 subjects reenrolled in 2002 (SAPALDIA 2). The effects of individually assigned traffic exposures on reported respiratory symptoms were estimated, while controlling for socioeconomic and exposure- and health-related factors. The risk of attacks of breathlessness increased for all subjects by 13% (95% confidence interval: 3, 24) per 500-m increment in the length of main street segments within 200 m of the home and decreased in never smokers by 12% (95% confidence interval: 0, 22) per 100-m increment in distance from home to a main street. Living within 20 m of a main street increased the risks of regular phlegm by 15% (95% confidence interval: 0, 31) and wheezing with breathing problems by 34% (95% confidence interval: 0, 79) in never smokers. In 2002, the effects related to road distance were different from those in 1991, which could be due to changes in the traffic pollution mixture. These findings among a general population provide strong confirmation that living near busy streets leads to adverse respiratory health effects.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Single pollutant versus surrogate measure approaches: Do single pollutant risk assessments underestimate the impact of air pollution on lung cancer risk?(Lippincott Williams & Wilkins, 2003) Röösli, Martin; Künzli, Nino; Schindler, Christian; Theis, Gaston; Bayer-Oglesby, Lucy; Mathys, Patrick; Camenzind, Markus; Braun-Fahrländer, CharlotteCancer risk as a result of air pollution may be quantified by different approaches. We compared the sum of unit risk based effects of single pollutants with an epidemiology-based method by using PM10 as a surrogate of the total air pollution. The excess rate for lung cancer cases attributable to an increase of 10 μg/m3 in average PM10 exposure was estimated from available cohort studies. Applying the epidemiology-based risk method to the air pollution situation in the Basel area (Switzerland) resulted in 13.3 (95% CI = 6.9–19.8) excess lung cancer cases per 100,000 person years. This estimate was considerably higher than the unit risk-based estimate yielding 1.1 (range, 0.45–2.8) cancer cases per 100,000 person years. We discuss these discrepancies in light of inherent differences between approaches in toxicology and epidemiology.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Validity of Ambient Levels of Fine Particles as Surrogate for Personal Exposure to Outdoor Air Pollution—Results of the European EXPOLIS-EAS Study (Swiss Center Basel)(Taylor & Francis, 27.12.2011) Bayer-Oglesby, Lucy; Künzli, Nino; Röösli, Martin; Braun-Fahrländer, Charlotte; Mathys, Patrick; Stern, Willem; Jantunen, Matti; Kousa, AnuTo evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM2.5 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rSpearman (Sp) = 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.01A - Beitrag in wissenschaftlicher Zeitschrift