Auflistung nach Autor:in "Imhof, David"
Gerade angezeigt 1 - 4 von 4
- Treffer pro Seite
- Sortieroptionen
Publikation Aerosol and NOx emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes(Copernicus, 21.06.2006) Imhof, David; Weingartner, Ernest; Prévôt, André S.H.; Ordóñez, Carlos; Kurtenbach, Ralf; Wiesen, Peter; Rodler, Johannes; Sturm, Peter; McCrae, Ian; Ekström, M.; Baltensperger, UrsMeasurements of aerosol particle number size distributions (18–700 nm), mass concentrations (PM2.5 and PM10) and NOx were performed in the Plabutsch tunnel, Austria, and in the Kingsway tunnel, United Kingdom. These two tunnels show different characteristics regarding the roadway gradient, the composition of the vehicle fleet and the traffic frequency. The submicron particle size distributions contained a soot mode in the diameter range D=80–100 nm and a nucleation mode in the range of D=20–40 nm. In the Kingsway tunnel with a significantly lower particle number and volume concentration level than in the Plabutsch tunnel, a clear diurnal variation of nucleation and soot mode particles correlated to the traffic density was observed. In the Plabutsch tunnel, soot mode particles also revealed a diurnal variation, whereas no substantial variation was found for the nucleation mode particles. During the night a higher number concentration of nucleation mode particles were measured than soot mode particles and vice versa during the day. In this tunnel with very high soot emissions during daytime due to the heavy-duty vehicle (HDV) share of 18% and another 40% of diesel driven light-duty vehicles (LDV) semivolatile species condense on the pre-existing soot surface area rather than forming new particles by homogeneous nucleation. With the low concentration of soot mode particles in the Kingsway tunnel, also the nucleation mode particles exhibit a diurnal variation. From the measured parameters real-world traffic emission factors were estimated for the whole vehicle fleet as well as differentiated into the two categories LDV and HDV. In the particle size range D=18–700 nm, each vehicle of the mixed fleet emits (1.50±0.08)×10^14 particles km-1 (Plabutsch) and (1.26±0.10)×10^14 particles km-1 (Kingsway), while particle volume emission factors of 0.209±0.008 cm³ km-1 and 0.036±0.004 cm³ km-1, respectively, were obtained. PM1 emission factors of 104±4 mg km-1 (Plabutsch) and 41±4 mg km-1 (Kingsway) were calculated. Emission factors determined in this work were in good agreement with results from other studies.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Real-world emission factors of fine and ultrafine aerosol particles for different traffic situations in Switzerland(American Chemical Society, 30.09.2005) Imhof, David; Weingartner, Ernest; Ordóñez, Carlos; Gehrig, Robert; Hill, Matz; Buchmann, Brigitte; Baltensperger, Urs01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Roadside measurements of particulate matter size distribution(Elsevier, 10/2003) Sturm, Peter J.; Baltensperger, Urs; Bacher, Michael; Lechner, Bernhard; Hausberger, Stefan; Heiden, Bernhard; Imhof, David; Weingartner, Ernest; Prévôt, André S.H.; Kurtenbach, Ralf; Wiesen, PeterRoadside measurements were performed in order to document the size distribution of particulate matter (PM) under dilution conditions similar to those found in real world. These activities covered measurements at engine test beds, at different locations in a road tunnel as well as in an urban environment. In order to get a clear picture of the evolution of the PM in different size classes, the in-tunnel locations ranged from curb-side to different locations inside the exhaust air system. Additional measurements were performed in the ambient air at curb-side at a street crossing as well as in urban background. At those times when heavy traffic occurs, tunnel measurements show size distributions similar to those derived from engine/vehicle measurements. During times with little traffic the size distributions are closer to those recorded in ambient air. As soon as the traffic load increases the size distribution changes, due to rapid coagulation of the smallest particles with the accumulation mode. As the travel time of the particles through the tunnel and up the stacks is very long “aging” effects could be observed. Thus, these spectra are quite different from ambient measurements in urban air, especially in the region above 30–40 nm.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Separate determination of PM10 emission factors of road traffic for tailpipe emissions and emissions from abrasion and resuspension processes(Inderscience, 28.10.2004) Gehrig, Robert; Hill, Matz; Buchmann, Brigitte; Imhof, David; Weingartner, Ernest; Baltensperger, UrsLittle is known about the relevance of mechanically produced particles of road traffic from abra-sion and resuspension processes in relation to the exhaust pipe particles. In this paper, emis-sion factors of PM10 and PM1 for light and heavy-duty vehicles were derived for different repre-sentative traffic regimes from concentration differences of particles and nitrogen oxides (NOₓ) in ambient air upwind and downwind of busy roads, or alternatively of kerbsides and nearby back-ground sites. Hereby, PM1 was interpreted as direct exhaust emissions and PM10-PM1 as me-chanically produced emissions from abrasion and resuspension processes. The results show that abrasion and resuspension processes represent a significant part of the total primary PM10 emissions of road traffic. At sites with relatively undisturbed traffic flow they are in the same range as the exhaust pipe emissions. At sites with disturbed traffic flow due to traffic lights, emissions from abrasion/resuspension are even higher than those from the exhaust pipes.01A - Beitrag in wissenschaftlicher Zeitschrift