Auflistung nach Autor:in "Wehner, Birgit"
Gerade angezeigt 1 - 3 von 3
Treffer pro Seite
Sortieroptionen
- PublikationA European aerosol phenomenology - 1. physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe(Elsevier, 05/2004) Van Dingenen, Rita; Raes, Frank; Putaud, Jean-Philippe; Baltensperger, Urs; Charron, Aurélie; Facchini, Maria Cristina; Decesari, Stefano; Fuzzi, Sandro; Gehrig, Robert; Hansson, Hans-Christen; Harrison, Roy M.; Hüglin, Cristoph; Jones, Alan M.; Laj, Paolo; Lorbeer, Gundi; Maenhaut, Willy; Palmgren, Finn; Querol, Xavier; Rodriguez, Sergio; Schneider, Jürgen; ten Brink, Harry; Tunved, Peter; Tørseth, Kjetil; Wehner, Birgit; Weingartner, Ernest; Wiedensohler, Alfred; Wåhlin, Peter [in: Atmospheric Environment]This paper synthesizes data on aerosol (particulate matter, PM) physical characteristics, which were obtained in European aerosol research activities at free-troposphere, natural, rural, near-city, urban, and kerbside sites over the past decade. It covers only two sites in the semi-arid Mediterranean area, and lacks data from Eastern Europe. The data include PM10 and/or PM2.5 mass concentrations, and aerosol particle size distributions. Such data sets are more comprehensive than those currently provided by air quality monitoring networks (e.g. EMEP, EUROAIRNET). Data available from 31 sites in Europe (called “The Network”) were reviewed. They were processed and plotted to allow comparisons in spite of differences in the sampling and analytical techniques used in various studies. A number of conclusions are drawn as follows: Background annual average PM10 and PM2.5 mass concentrations for continental Europe are 7.0±4.1 and 4.8±2.4 μg mˉ³, respectively. The EU 2005 annual average PM10 standard of 40 μg mˉ³ is exceeded at a few sites in The Network. At all near city, urban and kerbside sites, the EU 2010 annual average PM10 standard of 20 μg mˉ³, as well as the US-EPA annual average PM2.5 standard of 15 μg mˉ³ are exceeded. In certain regions, PM10 and PM2.5 in cities are strongly affected by the regional aerosol background. There is no “universal” (i.e. valid for all sites) ratio between PM2.5 and PM10 mass concentrations, although fairly constant ratios do exist at individual sites. There is no universal correlation between PM mass concentration on the one hand, and total particle number concentration on the other hand, although a ‘baseline’ ratio between number and mass is found for sites not affected by local emissions. This paper is the first part of two companion papers of which the second part describes chemical characteristics.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationMobility particle size spectrometers. harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions(Copernicus, 29.03.2012) Wiedensohler, Alfred; Birmili, Wolfram; Nowak, Marta; Sonntag, André; Weinhold, Kay; Merkel, Maik; Wehner, Birgit; Tuch, Thomas; Pfeifer, Sascha; Fiebig, Markus; Fjäraa, Ann Mari; Asmi, Eija; Sellegri, Karine; Depuy, R.; Venzac, Hervé; Villani, Paolo; Laj, Paolo; Aalto, Pasi Pekka; Ogren, John A.; Swietlicki, Erik; Williams, Paul I.; Roldin, Pontus; Quincey, Paul; Hüglin, Christoph; Fierz-Schmidhauser, Rahel; Gysel, Martin; Weingartner, Ernest; Riccobono, Francesco; Santos, S.; Gruening, Carsten; Faloon, K.; Beddows, D.; Harrison, Roy; Monahan, C.; Jennings, Stephen G.; O'Dowd, Colin D.; Marinoni, Angela; Horn, H.-G.; Keck, L.; Jiang, Jingkun; Scheckman, Jakob; McMurry, Peter H.; Deng, Zhaoze; Zhao, Chunsheng; Moerman, Marcel; Henzing, Bas; de Leeuw, Gerrit; Löschau, G.; Bastian, S. [in: Atmospheric Measurement Techniques]Abstract. Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationPrimary versus secondary contributions to particle number concentrations in the European boundary layer(Copernicus, 05.12.2011) Reddington, Carly L.; Carslaw, Ken S.; Spracklen, Dominick V.; Frontoso, Maria Grazia; Collins, Lisa M.; Merikanto, Joonas; Minikin, Andreas; Hamburger, Thomas; Coe, Hugh; Kulmala, Markku; Aalto, Pasi Pekka; Flentje, Harald; Plass-Dülmer, Christian; Birmili, Wolfram; Wiedensohler, Alfred; Wehner, Birgit; Tuch, Thomas; Sonntag, Alfred; O'Dowd, Collin D.; Jennings, Stephen G.; Dupuy, Regis; Baltensperger, Urs; Weingartner, Ernest; Hansson, Hans-Christen; Tunved, Peter; Laj, Paolo; Sellegri, Karine; Boulon, Julien; Putaud, Jean-Philippe; Gruening, Carsten; Swietlicki, Erik; Roldin, Pontus; Henzing, J.S.; Moerman, Marcel; Mihalopoulos, Nikolaos; Kouvarakis, Giorgos; Ždímal, Vladimir; Zíková, Nadezda; Marinoni, Angela; Bonasoni, Paolo; Duchi, Rocco [in: Atmospheric Chemistry and Physics]It is important to understand the relative contribution of primary and secondary particles to regional and global aerosol so that models can attribute aerosol radiative forcing to different sources. In large-scale models, there is considerable uncertainty associated with treatments of particle formation (nucleation) in the boundary layer (BL) and in the size distribution of emitted primary particles, leading to uncertainties in predicted cloud condensation nuclei (CCN) concentrations. Here we quantify how primary particle emissions and secondary particle formation influence size-resolved particle number concentrations in the BL using a global aerosol microphysics model and aircraft and ground site observations made during the May 2008 campaign of the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI). We tested four different parameterisations for BL nucleation and two assumptions for the emission size distribution of anthropogenic and wildfire carbonaceous particles. When we emit carbonaceous particles at small sizes (as recommended by the Aerosol Intercomparison project, AEROCOM), the spatial distributions of campaign-mean number concentrations of particles with diameter >50 nm (N50) and >100 nm (N100) were well captured by the model (R2≥0.8) and the normalised mean bias (NMB) was also small (−18% for N50 and −1% for N100). Emission of carbonaceous particles at larger sizes, which we consider to be more realistic for low spatial resolution global models, results in equally good correlation but larger bias (R2≥0.8, NMB = −52% and −29%), which could be partly but not entirely compensated by BL nucleation. Within the uncertainty of the observations and accounting for the uncertainty in the size of emitted primary particles, BL nucleation makes a statistically significant contribution to CCN-sized particles at less than a quarter of the ground sites. Our results show that a major source of uncertainty in CCN-sized particles in polluted European air is the emitted size of primary carbonaceous particles. New information is required not just from direct observations, but also to determine the "effective emission size" and composition of primary particles appropriate for different resolution models.01A - Beitrag in wissenschaftlicher Zeitschrift