Auflistung nach Autor:in "Zieger, Paul"
Gerade angezeigt 1 - 13 von 13
Treffer pro Seite
Sortieroptionen
- PublikationA global study of hygroscopicity-driven light-scattering enhancement in the context of other in situ aerosol optical properties(Copernicus, 2021) Titos, Gloria; Burgos, María A.; Zieger, Paul; Alados-Arboledas, Lucas; Baltensperger, Urs; Jefferson, Anne; Sherman, James; Weingartner, Ernest; Henzing, Bas; Luoma, Krista; O'Dowd, Colin; Wiedensohler, Alfred; Andrews, Elisabeth [in: Atmospheric Chemistry and Physics]The scattering and backscattering enhancement factors (f(RH) and fb(RH)) describe how aerosol particle light scattering and backscattering, respectively, change with relative humidity (RH). They are important parameters in estimating direct aerosol radiative forcing (DARF). In this study we use the dataset presented in Burgos et al. (2019) that compiles f(RH) and fb(RH) measurements at three wavelengths (i.e., 450, 550 and 700 nm) performed with tandem nephelometer systems at multiple sites around the world. We present an overview of f(RH) and fb(RH) based on both long-term and campaign observations from 23 sites representing a range of aerosol types. The scattering enhancement shows a strong variability from site to site, with no clear pattern with respect to the total scattering coefficient. In general, higher f(RH) is observed at Arctic and marine sites, while lower values are found at urban and desert sites, although a consistent pattern as a function of site type is not observed. The backscattering enhancement fb(RH) is consistently lower than f(RH) at all sites, with the difference between f(RH) and fb(RH) increasing for aerosol with higher f(RH). This is consistent with Mie theory, which predicts higher enhancement of the light scattering in the forward than in the backward direction as the particle takes up water. Our results show that the scattering enhancement is higher for PM1 than PM10 at most sites, which is also supported by theory due to the change in scattering efficiency with the size parameter that relates particle size and the wavelength of incident light. At marine-influenced sites this difference is enhanced when coarse particles (likely sea salt) predominate. For most sites, f(RH) is observed to increase with increasing wavelength, except at sites with a known dust influence where the spectral dependence of f(RH) is found to be low or even exhibit the opposite pattern. The impact of RH on aerosol properties used to calculate radiative forcing (e.g., single-scattering albedo, ω0, and backscattered fraction, b) is evaluated. The single-scattering albedo generally increases with RH, while b decreases. The net effect of aerosol hygroscopicity on radiative forcing efficiency (RFE) is an increase in the absolute forcing effect (negative sign) by a factor of up to 4 at RH = 90 % compared to dry conditions (RH < 40 %). Because of the scarcity of scattering enhancement measurements, an attempt was made to use other more commonly available aerosol parameters (i.e., ω0 and scattering Ångström exponent, αsp) to parameterize f(RH). The majority of sites (75 %) showed a consistent trend with ω0 (higher f(RH = 85 %) for higher ω0), while no clear pattern was observed between f(RH = 85 %) and αsp. This suggests that aerosol ω0 is more promising than αsp as a surrogate for the scattering enhancement factor, although neither parameter is ideal. Nonetheless, the qualitative relationship observed between ω0 and f(RH) could serve as a constraint on global model simulations.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationA review of more than 20 years of aerosol observation at the high altitude research station Jungfraujoch, Switzerland (3580 m asl)(Taiwan Association for Aerosol Research, 2016) Bukowiecki, Nicolas; Weingartner, Ernest; Gysel, Martin; Coen, Martine Collaud; Zieger, Paul; Herrmann, Erik; Steinbacher, Martin; Gäggeler, Heinz W.; Baltensperger, Urs [in: Aerosol and Air Quality Research]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationComparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw(Copernicus, 18.03.2011) Zieger, Paul; Weingartner, Ernest; Henzing, J.; de Leeuw, Gerrit; Mikkilä, Jyri; Ehn, Mikael; Petäjä, Tuukka; Clémer, K.; van Roozendael, Michel; Yilmaz, Selami; Frieß, U.; Irie, H.; Wagner, T.; Shaiganfar, R.; Beirle, S.; Apituley, Arnoud; Wilson, K.; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]Abstract. In the field, aerosol in-situ measurements are often performed under dry conditions (relative humidity RH<30–40%). Since ambient aerosol particles experience hygroscopic growth at enhanced RH, their microphysical and optical properties – especially the aerosol light scattering – are also strongly dependent on RH. The knowledge of this RH effect is of crucial importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. Here, we will present results from a four-month campaign which took place in summer 2009 in Cabauw, The Netherlands. The aerosol scattering coefficient σsp(λ) was measured dry and at various, predefined RH conditions between 20 and 95% with a humidified nephelometer. The scattering enhancement factor f(RH,λ) is the key parameter to describe the effect of RH on σsp(λ) and is defined as σsp(RH,λ) measured at a certain RH divided by the dry σsp(dry,λ). The measurement of f(RH,λ) together with the dry absorption measurement (assumed not to change with RH) allows the determination of the actual extinction coefficient σep(RH,λ) at ambient RH. In addition, a wide range of other aerosol properties were measured in parallel. The measurements were used to characterize the effects of RH on the aerosol optical properties. A closure study showed the consistency of the aerosol in-situ measurements. Due to the large variability of air mass origin (and thus aerosol composition) a simple parameterization of f(RH,λ) could not be established. If f(RH,λ) needs to be predicted, the chemical composition and size distribution need to be known. Measurements of four MAX-DOAS (multi-axis differential optical absorption spectroscopy) instruments were used to retrieve vertical profiles of σep(λ). The values of the lowest layer were compared to the in-situ values after conversion of the latter ones to ambient RH. The comparison showed a good correlation of R2 = 0.62–0.78, but the extinction coefficients from MAX-DOAS were a factor of 1.5–3.4 larger than the in-situ values. Best agreement is achieved for a few cases characterized by low aerosol optical depths and low planetary boundary layer heights. Differences were shown to be dependent on the applied MAX-DOAS retrieval algorithm. The comparison of the in-situ extinction data to a Raman LIDAR (light detection and ranging) showed a good correlation and higher values measured by the LIDAR (R2 = 0.82−0.85, slope of 1.69–1.76) if the Raman retrieved profile was used to extrapolate the directly measured extinction coefficient to the ground. The comparison improved if only nighttime measurements were used in the comparison (R2 = 0.96, slope of 1.12).01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationEffects of relative humidity on aerosol light scattering. results from different European sites(Copernicus, 2013) Zieger, Paul; Fierz-Schmidhauser, Rahel; Weingartner, Ernest; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]The effect of aerosol water uptake on the aerosol particle light scattering coefficient (σsp) is described in this study by comparing measurements from five European sites: the Jungfraujoch, located in the Swiss Alps at 3580 m a.s.l.; Ny-Ålesund, located on Spitsbergen in the Arctic; Mace Head, a coastal site in Ireland; Cabauw, a rural site in the Netherlands; and Melpitz, a regional background site in Eastern Germany. These sites were selected according to the aerosol type usually encountered at that location. The scattering enhancement factor f(RH, λ) is the key parameter to describe the effect of water uptake on the particle light scattering. It is defined as the σsp(RH) at a certain relative humidity (RH) and wavelength λ divided by its dry value. f(RH) at the five sites varied widely, starting at very low values of f(RH = 85%, λ = 550 nm) around 1.28 for mineral dust, and reaching up to 3.41 for Arctic aerosol. Hysteresis behavior was observed at all sites except at the Jungfraujoch (due to the absence of sea salt). Closure studies and Mie simulations showed that both size and chemical composition determine the magnitude of f(RH). Both parameters are also needed to successfully predict f(RH). Finally, the measurement results were compared to the widely used aerosol model, OPAC (Hess et al., 1998). Significant discrepancies were seen, especially at intermediate RH ranges; these were mainly attributed to inappropriate implementation of hygroscopic growth in the OPAC model. Replacement of the hygroscopic growth with values from the recent literature resulted in a clear improvement of the OPAC model.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationEvaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100)(Copernicus, 2012) Spiegel, Johanna K.; Zieger, Paul; Bukowiecki, Nicolas; Hammer, Emanuel; Weingartner, Ernest; Eugster, Werner [in: Atmospheric Measurement Techniques]Abstract. Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100): first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s−1 and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle) at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC) measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1) the error arising due to Mie scattering, and (2) the particle losses, especially for larger droplets depending on the set-up and wind conditions.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationGround-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010(Copernicus, 04.10.2011) Bukowiecki, Nicolas; Zieger, Paul; Weingartner, Ernest; Jurányi, Zsófia; Gysel, Martin; Neininger, Bruno; Schneider, Boris; Hueglin, Christoph; Ulrich, Andrea; Wichser, Adrian; Henne, Stephan; Brunner, Dominik; Kaegi, Ralf; Schwikowski, Margit; Tobler, Leonhard; Wienhold, Frank G.; Engel, Ilana; Buchmann, Brigitte; Peter, Thomas; Baltensperger, Urs [in: Atmospheric Chemistry and Physics]The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17–19 April 2010 and 16–19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 μm. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM10 mass concentrations at the Jungfraujoch reached 30 μgm−3 and 70 μgm−3 (for 10-min mean values) duri ng the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 μgm−3 of volcanic ash related PM10 (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200–520) μgm−3 on 18 May 2010 over the northwestern Swiss plateau. The presented data significantly contributed to the time-critical assessment of the local ash layer properties during the initial eruption phase. Furthermore, dispersion models benefited from the detailed information on the volcanic aerosol size distribution and its chemical composition.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationInfluence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol(Stockholm University Press, 2014) Zieger, Paul; Fierz-Schmidhauser, Rahel; Poulain, Laurent; Müller, Thomas; Birmili, Wolfram; Spindler, Gerald; Wiedensohler, Alfred; Baltensperger, Urs; Weingartner, Ernest [in: Tellus B: Chemical and Physical Meteorology]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationInvestigation of the planetary boundary layer in the Swiss Alps using remote sensing and in situ measurements(Springer, 2014) Ketterer, Christine; Zieger, Paul; Bukowiecki, Nicolas; Collaud Coen, Martine; Maier, Olaf; Ruffieux, Dominique; Weingartner, Ernest [in: Boundary-Layer Meteorology]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationLight scattering enhancement factors in the marine boundary layer (Mace Head, Ireland)(Wiley, 20.10.2010) Fierz‐Schmidhauser, Rahel; Zieger, Paul; Vaishya, Aditya; Monahan, Ciarán; Bialek, Jakub; O'Dowd, Collin D.; Jennings, Stephen G.; Baltensperger, Urs; Weingartner, Ernest [in: Journal of Geophysical Research: Atmospheres]Direct climate aerosol radiative forcing is influenced by the light scattering of atmospheric aerosols. The chemical composition, the size distribution, and the ambient relative humidity (RH) determine the amount of visible light scattered by aerosols. We measured the aerosol light scattering coefficients at RH varying from 30% to 90% of the marine atmosphere at the Mace Head Atmospheric Research Station on the west coast of Ireland. At this site, two major air mass types can be distinguished: clean marine and polluted air. In this paper, we present measurements of light scattering enhancement factors f(RH) = σsp(RH)/σsp(dry) from a 1 month field campaign (January–February 2009). At this site in winter, the mean f(RH = 85%) (standard deviation) for marine air masses at the wavelength of 550 nm was 2.22 (±0.17) and 1.77 (±0.31) for polluted air. Measured σsp(RH) and f(RH) agreed well with calculations from Mie theory using measurements of the size distribution and hygroscopic diameter growth factors as input. In addition, we investigated the RH influence on additional intensive optical properties: the backscatter fraction and the single scattering albedo. The backscatter fraction decreased by about 20%, and the single scattering albedo increased on average by 1%–5% at 85% RH compared to dry conditions.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationMeasured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch(Copernicus, 05.03.2010) Fierz-Schmidhauser, Rahel; Zieger, Paul; Gysel, Martin; Kammermann, Lukas; DeCarlo, Peter F.; Baltensperger, Urs; Weingartner, Ernest [in: Atmospheric Chemistry and Physics]Ambient relative humidity (RH) determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp) is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors f(RH)=σsp(RH)/σsp(dry) from a 1-month campaign (May 2008) at the high alpine site Jungfraujoch (3580 m a.s.l.), Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the f(RH) is available so far. At this site, f(RH=85%) varied between 1.2 and 3.3. Measured f(RH) agreed well with f(RH) calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f(RH) predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σsp(dry) as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationMeasurement of relative humidity dependent light scattering of aerosols(Copernicus, 21.01.2010) Fierz-Schmidhauser, Rahel; Zieger, Paul; Wehrle, Günther; Jefferson, Anne; Ogren, John A.; Baltensperger, Urs; Weingartner, Ernest [in: Atmospheric Measurement Techniques]Relative humidity (RH) influences the water content of aerosol particles and therefore has an important impact on the particles' ability to scatter visible light. The RH dependence of the particle light scattering coefficient (σsp is therefore an important measure for climate forcing calculations. We built a humidification system for a nephelometer which allows the measurement of σsp at a defined RH in the range of 40–90%. This RH conditioner consists of a humidifier followed by a dryer, which enables us to measure the hysteresis behavior of deliquescent aerosol particles. In this paper we present the set-up of a new humidified nephelometer, a detailed characterization with well defined laboratory generated aerosols, and a first application in the field by comparing our instrument to another humidified nephelometer. Monodisperse ammonium sulfate and sodium chloride particles were measured at four different dry particle sizes. Agreement between measurement and prediction based on Mie theory was found for both σsp and f(RH)=σsp(RH)/σsp(dry) within the range of uncertainty. The two humidified nephelometers measuring at a rural site in the Black Forest (Germany) often detected different f(RH), probably caused by the aerosol hysteresis behavior: when the aerosol was metastable, therefore was scattering more light, only one instrument detected the higher f(RH).01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationSpatial variation of aerosol optical properties around the high-alpine site Jungfraujoch (3580 m a.s.l.)(Copernicus, 08.08.2012) Zieger, Paul; Kienast-Sjögren, Erika; Starace, Michela; von Bismarck, Jonas; Bukowiecki, Nicolas; Baltensperger, Urs; Wienhold, Frank Gunther; Peter, Thomas; Ruhtz, Thomas; Collaud Coen, Martine; Vuilleumier, Laurent; Maier, Olaf; Emili, Emanuele; Popp, Christian; Weingartner, Ernest [in: Atmospheric Chemistry and Physics]This paper presents results of the extensive field campaign CLACE 2010 (Cloud and Aerosol Characterization Experiment) performed in summer 2010 at the Jungfraujoch (JFJ) and the Kleine Scheidegg (KLS) in the Swiss Alps. The main goal of this campaign was to investigate the vertical variability of aerosol optical properties around the JFJ and to show the consistency of the different employed measurement techniques considering explicitly the effects of relative humidity (RH) on the aerosol light scattering. Various aerosol optical and microphysical parameters were recorded using in-situ and remote sensing techniques. In-situ measurements of aerosol size distribution, light scattering, light absorption and scattering enhancement due to water uptake were performed at the JFJ at 3580 m a.s.l.. A unique set-up allowed remote sensing measurements of aerosol columnar and vertical properties from the KLS located about 1500 m below and within the line of sight to the JFJ (horizontal distance of approx. 4.5 km). In addition, two satellite retrievals from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the Moderate Resolution Imaging Spectroradiometer (MODIS) as well as back trajectory analyses were added to the comparison to account for a wider geographical context. All in-situ and remote sensing measurements were in clear correspondence. The ambient extinction coefficient measured in situ at the JFJ agreed well with the KLS-based LIDAR (Light Detection and Ranging) retrieval at the altitude-level of the JFJ under plausible assumptions on the LIDAR ratio. However, we can show that the quality of this comparison is affected by orographic effects due to the exposed location of the JFJ on a saddle between two mountains and next to a large glacier. The local RH around the JFJ was often higher than in the optical path of the LIDAR measurement, especially when the wind originated from the south via the glacier, leading to orographic clouds which remained lower than the LIDAR beam. Furthermore, the dominance of long-range transported Saharan dust was observed in all easurements for several days, however only for a shorter time period in the in-situ measurements due to the vertical structure of the dust plume. The optical properties of the aerosol column retrieved from SEVIRI and MODIS showed the same magnitude and a similar temporal evolution as the measurements at the KLS and the JFJ. Remaining differences are attributed to the complex terrain and simplifications in the aerosol retrieval scheme in general.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationThe white-light humidified optical particle spectrometer (WHOPS) - a novel airborne system to characterize aerosol hygroscopicity(Copernicus, 2015) Rosati, Bernadette; Wehrle, Günther; Gysel, Martin; Zieger, Paul; Baltensperger, Urs; Weingartner, Ernest [in: Atmospheric Measurement Techniques]Aerosol particles experience hygroscopic growth at enhanced relative humidity (RH), which leads to changes in their optical properties. We developed the white-light humidified optical particle spectrometer (WHOPS), a new instrument to investigate the particles' hygroscopic growth. Here we present a detailed technical description and characterization of the WHOPS in laboratory and field experiments. The WHOPS consists of a differential mobility analyzer, a humidifier/bypass and a white-light aerosol spectrometer (WELAS) connected in series to provide fast measurements of particle hygroscopicity at subsaturated RH and optical properties on airborne platforms. The WELAS employs a white-light source to minimize ambiguities in the optical particle sizing. In contrast to other hygroscopicity instruments, the WHOPS retrieves information of relatively large particles (i.e., diameter D > 280 nm), therefore investigating the more optically relevant size ranges. The effective index of refraction of the dry particles is retrieved from the optical diameter measured for size-selected aerosol samples with a well-defined dry mobility diameter. The data analysis approach for the optical sizing and retrieval of the index of refraction was extensively tested in laboratory experiments with polystyrene latex size standards and ammonium sulfate particles of different diameters. The hygroscopic growth factor (GF) distribution and aerosol mixing state is inferred from the optical size distribution measured for the size-selected and humidified aerosol sample. Laboratory experiments with pure ammonium sulfate particles revealed good agreement with Köhler theory (mean bias of ~3% and maximal deviation of 8% for GFs at RH = 95%). During first airborne measurements in the Netherlands, GFs (mean value of the GF distribution) at RH = 95% between 1.79 and 2.43 with a median of 2.02 were observed for particles with a dry diameter of 500 nm. This corresponds to hygroscopicity parameters (κ) between 0.25 and 0.75 with a median of 0.38. The GF distributions indicate externally mixed particles covering the whole range of GFs between ~1.0 and 3.0. On average, ~74% of the 500 nm particles had GFs > 1.5, ~15% had GF < 1.1 and the remaining ~1% showed values of 1.1 < GF < 1.5. The more hygroscopic mode sometimes peaked at GF > 2, indicating influence of sea-salt particles, consistent with previous ground-based particle hygroscopicity measurements in this area. The mean dry effective index of refraction for 500 nm particles was found to be rather constant with a value of 1.42 ± 0.04 (mean ± 1SD).01A - Beitrag in wissenschaftlicher Zeitschrift