Listen
2 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation Opportunities for Successful Stabilization of Poor Glass-Forming Drugs: A Stability-Based Comparison of Mesoporous Silica Versus Hot Melt Extrusion Technologies(Elsevier, 04.11.2019) Ditzinger, Felix; Price, Daniel J.; Nair, Anita; Becker-Baldus, Johanna; Glaubitz, Clemens; Dressman, Jennifer; Saal, Christoph; Kuentz, MartinAmorphous formulation technologies to improve oral absorption of poorly soluble active pharmaceutical ingredients (APIs) have become increasingly prevalent. Currently, polymer-based amorphous formulations manufactured by spray drying, hot melt extrusion (HME), or co-precipitation are most common. However, these technologies have challenges in terms of the successful stabilization of poor glass former compounds in the amorphous form. An alternative approach is mesoporous silica, which stabilizes APIs in non-crystalline form via molecular adsorption inside nano-scale pores. In line with these considerations, two poor glass formers, haloperidol and carbamazepine, were formulated as polymer-based solid dispersion via HME and with mesoporous silica, and their stability was compared under accelerated conditions. Changes were monitored over three months with respect to solid-state form and dissolution. The results were supported by solid-state nuclear magnetic resonance spectroscopy (SS-NMR) and scanning electron microscopy (SEM). It was demonstrated that mesoporous silica was more successful than HME in the stabilization of the selected poor glass formers. While both drugs remained non-crystalline during the study using mesoporous silica, polymer-based HME formulations showed recrystallization after one week. Thus, mesoporous silica represents an attractive technology to extend the formulation toolbox to poorly soluble poor glass formers.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation In vitro methods to assess drug precipitation in the fasted small intestine – a PEARRL review(Wiley, 06/2018) O'Dwyer, Patrick J.; Litou, Chara; Box, Karl, J.; Dressman, Jennifer; Kostewicz, Edmund, S.; Kuentz, Martin; Reppas, ChristosObjectives Drug precipitation in vivo poses a significant challenge for the pharmaceutical industry. During the drug development process, the impact of drug supersaturation or precipitation on the in vivo behaviour of drug products is evaluated with in vitro techniques. This review focuses on the small and full scale in vitro methods to assess drug precipitation in the fasted small intestine. Key findings Many methods have been developed in an attempt to evaluate drug precipitation in the fasted state, with varying degrees of complexity and scale. In early stages of drug development, when drug quantities are typically limited, small‐scale tests facilitate an early evaluation of the potential precipitation risk in vivo and allow rapid screening of prototype formulations. At later stages of formulation development, full‐scale methods are necessary to predict the behaviour of formulations at clinically relevant doses. Multicompartment models allow the evaluation of drug precipitation after transfer from stomach to the upper small intestine. Optimisation of available biopharmaceutics tools for evaluating precipitation in the fasted small intestine is crucial for accelerating the development of novel breakthrough medicines and reducing the development costs. Summary Despite the progress from compendial quality control dissolution methods, further work is required to validate the usefulness of proposed setups and to increase their biorelevance, particularly in simulating the absorption of drug along the intestinal lumen. Coupling results from in vitro testing with physiologically based pharmacokinetic modelling holds significant promise and requires further evaluation.01A - Beitrag in wissenschaftlicher Zeitschrift