Listen
3 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation In Silico, In Vitro, and In Vivo evaluation of precipitation inhibitors in supersaturated lipid-based formulations of venetoclax(American Chemical Society, 23.04.2021) Koehl, Niklas; Henze, Laura; Bennett-Lenane, Harriett; Faisal, Waleed; Price, Daniel J.; Holm, Rene; Kuentz, Martin; Griffin, BrendanThe concept of using precipitation inhibitors (PIs) to sustain supersaturation is well established for amorphous formulations but less in the case of lipid-based formulations (LBF). This study applied a systematic in silico–in vitro–in vivo approach to assess the merits of incorporating PIs in supersaturated LBFs (sLBF) using the model drug venetoclax. sLBFs containing hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), polyvinylpyrrolidone (PVP), PVP-co-vinyl acetate (PVP/VA), Pluronic F108, and Eudragit EPO were assessed in silico calculating a drug–excipient mixing enthalpy, in vitro using a PI solvent shift test, and finally, bioavailability was assessed in vivo in landrace pigs. The estimation of pure interaction enthalpies of the drug and the excipient was deemed useful in determining the most promising PIs for venetoclax. The sLBF alone (i.e., no PI present) displayed a high initial drug concentration in the aqueous phase during in vitro screening. sLBF with Pluronic F108 displayed the highest venetoclax concentration in the aqueous phase and sLBF with Eudragit EPO the lowest. In vivo, the sLBF alone showed the highest bioavailability of 26.3 ± 14.2%. Interestingly, a trend toward a decreasing bioavailability was observed for sLBF containing PIs, with PVP/VA being significantly lower compared to sLBF alone. In conclusion, the ability of a sLBF to generate supersaturated concentrations of venetoclax in vitro was translated into increased absorption in vivo. While in silico and in vitro PI screening suggested benefits in terms of prolonged supersaturation, the addition of a PI did not increase in vivo bioavailability. The findings of this study are of particular relevance to pre-clinical drug development, where the high in vivo exposure of venetoclax was achieved using a sLBF approach, and despite the perceived risk of drug precipitation from a sLBF, including a PI may not be merited in all cases.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Opportunities for Successful Stabilization of Poor Glass-Forming Drugs: A Stability-Based Comparison of Mesoporous Silica Versus Hot Melt Extrusion Technologies(Elsevier, 04.11.2019) Ditzinger, Felix; Price, Daniel J.; Nair, Anita; Becker-Baldus, Johanna; Glaubitz, Clemens; Dressman, Jennifer; Saal, Christoph; Kuentz, MartinAmorphous formulation technologies to improve oral absorption of poorly soluble active pharmaceutical ingredients (APIs) have become increasingly prevalent. Currently, polymer-based amorphous formulations manufactured by spray drying, hot melt extrusion (HME), or co-precipitation are most common. However, these technologies have challenges in terms of the successful stabilization of poor glass former compounds in the amorphous form. An alternative approach is mesoporous silica, which stabilizes APIs in non-crystalline form via molecular adsorption inside nano-scale pores. In line with these considerations, two poor glass formers, haloperidol and carbamazepine, were formulated as polymer-based solid dispersion via HME and with mesoporous silica, and their stability was compared under accelerated conditions. Changes were monitored over three months with respect to solid-state form and dissolution. The results were supported by solid-state nuclear magnetic resonance spectroscopy (SS-NMR) and scanning electron microscopy (SEM). It was demonstrated that mesoporous silica was more successful than HME in the stabilization of the selected poor glass formers. While both drugs remained non-crystalline during the study using mesoporous silica, polymer-based HME formulations showed recrystallization after one week. Thus, mesoporous silica represents an attractive technology to extend the formulation toolbox to poorly soluble poor glass formers.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Lipophilicity and hydrophobicity considerations in bio-enabling oral formulations approaches | a PEARRL review(Wiley, 04/2019) Ditzinger, Felix; Price, Daniel J.; Ilie, Alexandra Roxana; Koehl, Niklas; Jankovic, Sandra; Tsakiridou, Georgia; Aleandri, Simone; Kalantzi, Lida; Holm, Rene; Nair, Anita; Saal, Christoph; Griffin, Brendan; Kuentz, Martin01A - Beitrag in wissenschaftlicher Zeitschrift