Listen
3 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation Novel Biphasic Lipolysis Method To Predict in Vivo Performance of Lipid-Based Formulations(American Chemical Society, 21.08.2020) O'Dwyer, Patrick J.; Kuentz, MartinThe absence of an intestinal absorption sink is a significant weakness of standard in vitro lipolysis methods, potentially leading to poor prediction of in vivo performance and an overestimation of drug precipitation. In addition, the majority of the described lipolysis methods only attempt to simulate intestinal conditions, thus overlooking any supersaturation or precipitation of ionizable drugs as they transition from the acidic gastric environment to the more neutral conditions of the intestine. The aim of this study was to develop a novel lipolysis method incorporating a two-stage gastric-to-intestinal transition and an absorptive compartment to reliably predict in vivo performance of lipid-based formulations (LBFs). Drug absorption was mimicked by in situ quantification of drug partitioning into a decanol layer. The method was used to characterize LBFs from four studies described in the literature, involving three model drugs (i.e., nilotinib, fenofibrate, and danazol) where in vivo bioavailability data have previously been reported. The results from the novel biphasic lipolysis method were compared to those of the standard pH-stat method in terms of reliability for predicting the in vivo performance. For three of the studies, the novel biphasic lipolysis method more reliably predicted the in vivo bioavailability compared to the standard pH-stat method. In contrast, the standard pH-stat method was found to produce more predictive results for one study involving a series of LBFs composed of the soybean oil, glyceryl monolinoleate (Maisine CC), Kolliphor EL, and ethanol. This result was surprising and could reflect that increasing concentrations of ethanol (as a cosolvent) in the formulations may have resulted in greater partitioning of the drug into the decanol absorptive compartment. In addition to the improved predictivity for most of the investigated systems, this biphasic lipolysis method also uses in situ analysis and avoids time- and resource-intensive sample analysis steps, thereby facilitating a higher throughput capacity and biorelevant approach for characterization of LBFs.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Permeation characteristics of hypericin across Caco-2 monolayers in presence of singe flavonoids, defined flavonoid mixtures or Hypericum extract matrix(Wiley, 2017) Verjee, Sheela; Kelber, Olaf; Kolb, Christiane; Abdel-Aziz, Heba; Butterweck, VeronikaObjectives The major aim of this study was to get a detailed understanding of the exposure and fate of hypericin in the Caco-2 cell system when combined with various flavonoids, mixtures of flavonoids or Hypericum perforatum extract matrix (STW3-VI). Methods The permeation characteristics of hypericin in the absence or presence of quercetin, quercitrin, isoquercitrin, hyperoside and rutin were tested. Hypericin (5 μm) was mixed with single flavonoids (20 μm) or with different flavonoid combinations (each flavonoid 4 or 10 μm, total flavonoid concentration: 20 μm). Further, the uptake of hypericin (5 μm) in the presence of H. perforatum extract matrix (7.25, 29 and 58 μg/ml) was studied. Key findings Following application of hypericin to the apical side of the monolayer, only negligible amounts of the compound were found in the basolateral compartment. From all tested flavonoids, only quercitrin increased the basolateral amount of hypericin. Dual flavonoid combinations were not superior compared to the single combinations. The amount of hypericin in the basolateral compartment increased concentration-dependently in the presence of extract matrix (from 0 to 7.5%). Conclusion Comparing the effects of various flavonoid mixtures vs the extract matrix, it can be concluded that, besides flavonoids, the extract seems to contain further compounds (e.g. phenolic acids or proanthocyanidins) which substantially improve the permeation characteristics of hypericin.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Trends in the Assessment of Drug Supersaturation and Precipitation In Vitro Using Lipid-Based Delivery Systems(Elsevier, 2016) Stillhart, Cordula; Kuentz, MartinThe generation of drug supersaturation close to the absorptive site is an important mechanism of how several formulation technologies enhance oral absorption and bioavailability. Lipid-based formulations belong to the supersaturating drug delivery systems although this is not the only mechanism of how drug absorption is promoted in vivo. Different methods to determine drug supersaturation and precipitation from lipid-based formulations are described in the literature. Experimental in vitro setups vary according to their complexity and proximity to the in vivo conditions and, therefore, some tests are used for early formulation screening, while others better qualify for a later stage of development. The present commentary discusses this rapidly evolving field of in vitro testing with a special focus on the advancements in analytical techniques and new approaches of mechanistic modeling. The importance of considering a drug absorption sink is particularly emphasized. This commentary should help formulators in the pharmaceutical industry as well as in academia to make informed decisions on how to conduct in vitro tests for lipid-based delivery systems and to decide on the implications of experimental results.01A - Beitrag in wissenschaftlicher Zeitschrift