Institut für Medizintechnik und Medizininformatik

Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/23

Listen

Ergebnisse nach Hochschule und Institut

Gerade angezeigt 1 - 10 von 266
  • Vorschaubild
    Publikation
    05 - Forschungs- oder Arbeitsbericht
  • Vorschaubild
    Publikation
    Computational deconvolution of the dengue immune response complexity with identification of novel broadly neutralizing antibodies
    (21.09.2022) Natali, Eriberto Noel; Horst, Alexander; Meier, Patrick; Greiff, Victor; Nuvolone, Mario; Babrak, Lmar Marie; Djordjevic, Kristina; Fink, Katja; Traggiai, Elisabetta; Miho, Enkelejda
    Dengue virus poses a serious threat to global health as the causative agent of the dengue fever. Currently, there is no approved therapeutic, and broadly neutralizing antibodies recognizing all four serotypes may be an effective treatment. High-throughput immune repertoire sequencing and bioinformatic analysis enable in-depth understanding of the immune response in dengue infection. Here, we use these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences through investigation of antibody response in dengue. We observed challenging the immune system with dengue elicits the following signatures on the antibody repertoire: (i) an increase of the diversity in the CDR3 regions and the germline genes; (ii) a change in the architecture by eliciting power-law network distributions and enrichment in polar amino acids of the CDR3; (iii) an increase in the expression of transcription factors of the JNK/Fos pathways and ribosomal proteins. Moreover, our work demonstrates the applicability of computational methods and machine learning to high-throughput antibody repertoire sequencing datasets for neutralizing antibody candidate identification. Further investigation with antibody expression and functional assays is planned to validate the obtained results.
    06 - Präsentation
  • Vorschaubild
    Publikation
    Cloud-based three-dimensional pattern analysis and classification of proximal humeral fractures – A feasibility study
    (EasyChair, 2022) Kalt, Denise; Gerber Popp, Ariane; Degen, Markus; Brodbeck, Dominique; Coigny, Florian; Suter, Thomas; Schkommodau, Erik; Rodriguez y Baena, Ferdinando; Giles, Joshua W.; Stindel, Eric
    For the complex clinical issue of treatment decision for proximal humeral fractures, dedicated software based on three-dimensional (3D) computer tomography (CT) models would potentially allow for a more accurate fracture classification and help to plan the surgical strategy needed to reduce the fracture in the operating theatre. The aim of this study was to elaborate the feasibility of implementation of such software using state-of-the-art cloud technology to enable access to its functionalities in a distributed manner. Feasibility was studied by implementation of a prototype application, which was tested in a usability study with five biomedical engineers. Implementation of a cloud-based solution was feasible using state-of-the-art technology under application of a specific software architectural approach allowing to distribute computational load between client and server. Mean System Usability Scale (SUS) Score for the developed application was determined to be 63 (StDev 20.4). These results can be interpreted as a medium low usability with high standard deviation of the measured SUS score. We conclude that more test subjects should be included in future studies and the developed application should be evaluated with a representative user group such as orthopaedic shoulder surgeons in a clinical setting.
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Backtrainer. Computer-aided therapy system with augmented feedback for the lower back
    (SciTePress, 2009) Brodbeck, Dominique; Degen, Markus; Stanimirov, Michael; Kool, Jan; Scheermesser, Mandy; Oesch, Peter; Neuhaus, Cornelia; Azevedo, Luis; Londral, Ana
    Low back pain is an important problem in industrialized countries. Two key factors limit the effectiveness of physiotherapy: low compliance of patients with repetitive movement exercises, and inadequate awareness of patients of their own posture. The Backtrainer system addresses these problems by real-time monitoring of the spine position, by providing a framework for most common physiotherapy exercises for the low back, and by providing feedback to patients in a motivating way. A minimal sensor configuration was identified as two inertial sensors that measure the orientation of the lower back at two points with three degrees of freedom. The software was designed as a flexible platform to experiment with different hardware, and with various feedback modalities. Basic exercises for two types of movements are provided: mobilizing and stabilizing. We developed visual feedback - abstract as well as in the form of a virtual reality game - and complemented the on-screen graphics with an ambient feedback device. The system was evaluated during five weeks in a rehabilitation clinic with 26 patients and 15 physiotherapists. Subjective satisfaction of subjects was good, and we interpret the results as encouraging indication for the adoption of such a therapy support system by both patients and therapists.
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Tracking the orientation of deep brain stimulation electrodes using an embedded magnetic sensor
    (2021) Vergne, Céline; Madec, Morgan; Hemm-Ode, Simone; Quirin, Thomas; Vogel, Dorian; Hebrard, Luc; Pascal, Joris
    This paper proposes a three-dimensional (3D) orientation tracking method of a 3D magnetic sensor embedded in a 2.5 mm diameter electrode. Our system aims to be used during intraoperative surgery to detect the orientation of directional leads (D-leads) for deep brain stimulation (DBS).
    06 - Präsentation
  • Publikation
    Augmented feedback system to support physical therapy of non-specific low back pain
    (Springer, 2010) Brodbeck, Dominique; Degen, Markus; Stanimirov, Michael; Kool, Jan; Scheermesser, Mandy; Oesch, Peter; Neuhaus, Cornelia; Fred, Ana; Filipe, Joaquim; Gamboa, Hugo
    Low back pain is an important problem in industrialized countries. Two key factors limit the effectiveness of physiotherapy: low compliance of patients with repetitive movement exercises, and inadequate awareness of patients of their own posture. The Backtrainer system addresses these problems by real-time monitoring of the spine position, by providing a framework for most common physiotherapy exercises for the low back, and by providing feedback to patients in a motivating way. A minimal sensor configuration was identified as two inertial sensors that measure the orientation of the lower back at two points with three degrees of freedom. The software was designed as a flexible platform to experiment with different hardware, and with various feedback modalities. Basic exercises for two types of movements are provided: mobilizing and stabilizing. We developed visual feedback - abstract as well as in the form of a virtual reality game - and complemented the on-screen graphics with an ambient feedback device. The system was evaluated during five weeks in a rehabilitation clinic with 26 patients and 15 physiotherapists. Subjective satisfaction of subjects was good, and we interpret the results as encouraging indication for the adoption of such a therapy support system by both patients and therapists.
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    A mobile collaboration and decision support system for the medical emergency departement
    (SciTePress, 2012) Brodbeck, Dominique; Degen, Markus; Reiss, Maximilian; Conchon, Emmanuel; Correia, Carlos; Fred, Ana; Gamboa, Hugo
    A hospital emergency department is a complex work environment, where the availability of the right information at the right time is crucial for efficient and safe operation. The current technology in use for communication and information management is mostly based on telephones and stationary personal computers. Modern smartphones with their computational power, voice, image, and video capabilities have the potential to play a significant role in improving the flow of information in the emergency department. We developed a system that explicitly supports the work flows of an emergency department. In addition to mobile access to patient data and notifications about the availability of diagnostic findings, it provides the possibility to supply media captured on-site to the patient record, and directly supports the consultation process.
    04B - Beitrag Konferenzschrift
  • Publikation
    A method and tool for strategic hospital planning
    (Springer, 2015) Brodbeck, Dominique; Degen, Markus; Walter, Andreas; Reichlin, Serge; Napierala, Christoph; Fred, Ana; Gamboa, Hugo; Elias, Dirk
    We developed a visualization tool and a methodology to support strategic planning of hospital service portfolios. Hospitals in Switzerland are reimbursed with a fixed fee per case. The fixed-fee model makes medical services comparable from a financial point of view. In order to take advantage of this model, the data that characterizes the medical services must be operationalized. The method that we developed, centers around a visual metaphor that provides the basis for strategic thinking. It is complemented by a visualization tool that allows visualization, analysis, and modification of service portfolios. Special features enable the tool to be used during live planning sessions. We describe the method, the tool, and its application in strategy workshops for infrastructure planning, reorganization, and resource optimization decisions.
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Reinigungseffektivität und Kavitationsrauschpegel bei Ultraschall-unterstützter wässriger Reinigung von Medizinprodukten
    (2012) Jung, Christiane; Budesa, Boris; Fässler, Fabian; Uehlinger, Robert; Müller, Thomas; Schaffner, Patrik; Bläsi, Simon; de Wild, Michael
    04B - Beitrag Konferenzschrift
  • Vorschaubild
    Publikation
    Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires
    (Frontiers Research Foundation, 2018) Miho, Enkelejda; Yermanos, Alexander; Weber, Cédric R.; Berger, Christoph T.; Reddy, Sai T.; Greiff, Victor
    The adaptive immune system recognizes antigens via an immense array of antigen binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity and to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic, and (iv) machine learning methods applied to dissect, quantify, and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology toward coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.
    01A - Beitrag in wissenschaftlicher Zeitschrift