Institut für Medizintechnik und Medizininformatik
Dauerhafte URI für die Sammlunghttps://irf.fhnw.ch/handle/11654/23
Listen
6 Ergebnisse
Ergebnisse nach Hochschule und Institut
Publikation Microstructure of selective laser melted nickel–titanium(Elsevier, 2014) Bormann, Therese; Müller, Bert; Schinhammer, Michael; Kessler, Anja; Thalmann, Peter; de Wild, MichaelIn selective laser melting, the layer-wise local melting of metallic powder by means of a scanning focused laser beam leads to anisotropic microstructures, which reflect the pathway of the laser beam. We studied the impact of laser power, scanning speed, and laser path onto the microstructure of NiTi cylinders. Here, we varied the laser power from 56 to 100 W and the scanning speed from about 100 to 300 mm/s. In increasing the laser power, the grain width and length increased from (33 ± 7) to (90 ± 15) μm and from (60 ± 20) to (600 ± 200) μm, respectively. Also, the grain size distribution changed from uni- to bimodal. Ostwald-ripening of the crystallites explains the distinct bimodal size distributions. Decreasing the scanning speed did not alter the microstructure but led to increased phase transformation temperatures of up to 40 K. This was experimentally determined using differential scanning calorimetry and explained as a result of preferential nickel evaporation during the fabrication process. During selective laser melting of the NiTi shape memory alloy, the control of scanning speed allows restricted changes of the transformation temperatures, whereas controlling the laser power and scanning path enables us to tailor the microstructure, i.e. the crystallite shapes and arrangement, the extent of the preferred crystallographic orientation and the grain size distribution.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Tailoring selective laser melting process parameters for NiTi implants(Springer, 12/2012) Bormann, Therese; Schumacher, Ralf; Müller, Bert; Mertmann, Matthias; de Wild, MichaelComplex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined microarchitecture and advanced performance.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Combining micro computed tomography and three-dimensional registration to evaluate local strains in shape memory scaffolds(Elsevier, 02/2014) Bormann, Therese; Schulz, Georg; Deyhle, Hans; Beckmann, Felix; de Wild, Michael; Küffer, Jürg; Münch, Christoph; Hoffmann, Waldemar; Müller, BertAppropriate mechanical stimulation of bony tissue enhances osseointegration of load-bearing implants. Uniaxial compression of porous implants locally results in tensile and compressive strains. Their experimental determination is the objective of this study. Selective laser melting is applied to produce open-porous NiTi scaffolds of cubic units. To measure displacement and strain fields within the compressed scaffold, the authors took advantage of synchrotron radiation-based micro computed tomography during temperature increase and non-rigid three-dimensional data registration. Uniaxial scaffold compression of 6% led to local compressive and tensile strains of up to 15%. The experiments validate modeling by means of the finite element method. Increasing the temperature during the tomography experiment from 15 to 37 °C at a rate of 4 K h−1, one can locally identify the phase transition from martensite to austenite. It starts at ∼24 °C on the scaffolds bottom, proceeds up towards the top and terminates at ∼34 °C on the periphery of the scaffold. The results allow not only design optimization of the scaffold architecture, but also estimation of maximal displacements before cracks are initiated and of optimized mechanical stimuli around porous metallic load-bearing implants within the physiological temperature range.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Assessing the morphology of selective laser melted NiTi-scaffolds for a three-dimensional quantification of the one-way shape memory effect(03/2013) Bormann, Therese; de Wild, Michael; Beckmann, Felix; Müller, Bert; Goulbourne, Nakhiah C.; Naguib, Hani E.NiTi is promising for the use as bone scaffold, because the pseudoelasticity or the one- and two-way shape memory effect in the physiological window can mechanically stimulate the adherent cells. Such stimuli can enhance osseo integration and might reduce stress shielding associated with load bearing implants. The present study is based on the additive manufacturing technique of selective laser melting (SLM) to fabricate three-dimensional NiTi scaffolds. We demonstrate that the morphology of the scaffolds can be quantified using synchrotron radiation-based micro computed tomography (SRµCT) and sophisticated registration software. Comparing the CAD file with the SLM scaffolds, quality factors are derived. With respect to the CAD file, the overlap corresponds to (92.5 ± 0.6) %. (7.4 ± 0.42) % of material was missing and (48.9 ± 2.3) % of excess material found. This means that the actual scaffold is less porous than expected, a fact that has to be considered for the scaffold design. In order to quantify the shape memory effect during the shape recovery process, we acquired radiographs rotating an initially deformed scaffold in angular steps of 0.2 degree during controlled heating. The continuously acquired radiographs were combined to tomography data, showing that the quality factors evolved with temperature as the scaffold height, measured by conventional thermo-mechanical analysis. Furthermore, the data comprise the presence of compressive and tensile local strains in the three-dimensional scaffolds to be compared with the physiological situation.04B - Beitrag KonferenzschriftPublikation Smart 4D-printed implants and instruments(De Gruyter, 09/2020) de Wild, Michael; Schuler, FelixSelective laser melting (SLM) was used to manufacture smart programmed structures with customized properties made of biocompatible NiTi shape-memory alloy. A series of helixes was produced with systematically varied SLM process parameters Laser Exposure Time and Laser Power in order to specifically change the thermo-mechanical material properties of the 3D-structures. This innovation opens up the possibility to adjust the NiTi phase transformation temperature during the manufacturing process. This controllable property determines which of the two crystallographic phases martensite or austenite is present at a certain operating temperature and allows the mechanical properties to be adjusted: martensitic devices are soft and pseudo-plastic due to the shape-memory effect, whereas austenitic structures are pseudo-elastic. In a further step, the SLM process parameters were locally varied within 4D-printed twin-helixes. As a result, the phases, respectively the mechanical properties of a single component were adjusted at different locations. The ratio of elastic to plastic deformation and the spring constant of the helix can be locally controlled. This allows, for example, the spatio-temporal programming of 3D-printed surgical instruments or implants that are stimuli-responsive.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Damping of selective-laser-melted NiTi for medical implants(Springer, 2014) de Wild, Michael; Meier, Fabian; Bormann, Therese; Howald, Chaim; Müller, BertNiTi exhibits distinct damping properties associated with the martensite-austenite transformation. We fabricated net-shape NiTi parts layer-by-layer using a laser beam that locally melted the NiTi powder. The damping properties of such NiTi parts were analyzed by the decay of cantilever vibrations in comparison to conventionally prepared NiTi. The dynamic modulus as a function of the temperature was derived from the resonant frequency. We found that the two cantilevers showed a damping ratio of about 0.03 at temperatures below austenite start, maximal values of up to 0.04 in the transformation regions and low values of about 0.005 above austenite finish. The results indicate that selective-laser-melted NiTi qualifies for the fabrication of shock-absorbing medical implants in the same manner than conventionally produced NiTi.01A - Beitrag in wissenschaftlicher Zeitschrift