Hochschule für Technik und Umwelt FHNW
Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/35
Listen
37 Ergebnisse
Bereich: Suchergebnisse
Publikation Fine and ultrafine particles in the Zürich (Switzerland) area measured with a mobile laboratory: an assessment of the seasonal and regional variation throughout a year(Copernicus, 24.09.2003) Bukowiecki, Nicolas; Dommen, Josef; Prévôt, André S.H.; Weingartner, Ernest; Baltensperger, UrsOn occasion of the project YOGAM (year of gas phase and aerosol measurements), the spatial and temporal variation of selected aerosol and gas phase parameters was assessed for the Zürich (Switzerland) area with a new mobile pollutant measurement laboratory. This assessment based on on-road measurements along a specified route on selected days during different seasons in 2001/2002, covering urban, suburban and rural regions. Special focus was put on the investigation and characterization of particles in the fine (particle diameter D<2.5 mm) and ultrafine (D<100 nm) size ranges. Analysis of Variance (ANOVA) showed that the variance of all considered fine and ultrafine aerosol parameters (i.e. particle background and total number concentration for particles larger than 3 nm, number concentrations in the size ranges 7-30 nm and 80-140 nm, as well as the active surface area concentration) was significantly larger for day-to-day than for spatial variation. However, Principal Component Analysis (PCA) found a similar regional pollution pattern within every single measuring day. Lowest particle background levels (D>3 nm) were found in rural areas at higher elevation (15 000 cmˉ³), while corresponding mean background values for urban and freeway-influenced areas were typically 35 000 cmˉ³ and >80 000 cmˉ³, respectively. Meteorology, i.e. prevailing weather conditions not only governed the day-to-day concentration variations in the selected area, but also influenced the formation of primary (directly traffic-related) and in few cases secondary (biogenic or anthropogenic) ultrafine particles. Overall, low temperatures regularly enhanced primary ultrafine particle formation in urban areas. There was a possible indication for relatively low number concentrations of secondary ultrafine particles during a few warm and sunny spring days. Mobile measurements as they were performed in this study have been shown to be suitable for pollutant assessments to obtain good information on spatial and day-to-day variability. For experimental studies concerning spatial resolution on a relatively short time scale (<1 day), a mobile measurement design may even be more appropriate than a network of stationary measuring sites.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation A mobile pollutant measurement laboratory - measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution(Elsevier, 12/2002) Bukowiecki, Nicolas; Dommen, Josef; Prévôt, André S.H.; Richter, Rene; Weingartner, Ernest; Baltensperger, UrsA mobile pollutant measurement laboratory was designed and built at the Paul Scherrer Institute (Switzerland) for the measurement of on-road ambient concentrations of a large set of trace gases and aerosol parameters with high time resolution (<15 s for most instruments), along with geographical and meteorological information. This approach allowed for pollutant level measurements both near traffic (e.g. in urban areas or on freeways/main roads) and at rural locations far away from traffic, within short periods of time and at different times of day and year. Such measurements were performed on a regular base during the project year of gas phase and aerosol measurements (YOGAM). This paper presents data measured in the Zürich (Switzerland) area on a late autumn day (6 November) in 2001. The local urban particle background easily reached 50 000 cmˉ³, with additional peak particle number concentrations of up to 400 000 cmˉ³. The regional background of the total particle number concentration was not found to significantly correlate with the distance to traffic and anthropogenic emissions of carbon monoxide and nitrogen oxides. On the other hand, this correlation was significant for the number concentration of particles in the size range 50–150 nm, indicating that the particle number concentration in this size range is a better traffic indicator than the total number concentration. Particle number size distribution measurements showed that daytime urban ambient air is dominated by high number concentrations of ultrafine particles (nanoparticles) with diameters < 50 nm, which are immediately formed by traffic exhaust and thus belong to the primary emissions. However, significant variation of the nanoparticle mode was also observed in number size distributions measured in rural areas both at daytime and nighttime, suggesting that nanoparticles are not exclusively formed by primary traffic emissions. While urban daytime total number concentrations were increased by a factor of 10 compared to the nighttime background, corresponding factors for total surface area and total volume concentrations were 2 and 1.5, respectively.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Evidence for the role of organics in aerosol particle formation under atmospheric conditions(National Academy of Sciences, 19.01.2010) Metzger, Axel; Verheggen, Bart; Dommen, Josef; Duplissy, Jonathan; Prévôt, André S.H.; Weingartner, Ernest; Riipinen, Ilona; Kulmala, Markku; Spracklen, Dominick V.; Carslaw, Kenneth S.; Baltensperger, UrsNew particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Identification of organic acids in secondary organic aerosol and the corresponding gas phase from chamber experiments(American Chemical Society, 15.10.2004) Fisseha, Rebeka; Dommen, Josef; Sax, Mirjam; Paulsen, Dwane; Kalberer, Markus; Maurer, Rolf; Höfler, Frank; Weingartner, Ernest; Baltensperger, UrsOrganic acids in the gas and aerosol phase from photooxidation of 1,3,5-trimethylbenzene in the presence of 300 ppb propene and 300 ppb NOx in smog chamber experiments were determined using a wet effluent diffusion denuder/aerosol collector coupled to ion chromatography (IC) with conductivity detection. Behind the IC, the samples were collected using a fraction collector, for identification of unresolved/unidentified organic acids with IC-mass spectrometry (MS). In total, 20 organic acids were found with MS of which 10 were identified. The organic acids identified offline by IC-MS were then further quantified based on the online IC data. The identification was additionally confirmed with gas chromatography-mass spectrometry. At the maximum aerosol concentration, organic acids comprised 20-45% of the total aerosol mass. The method has a detection limit of 10-100 ng/m3 for the identified carboxylic acids.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Aerosol nucleation and growth in a mixture of sulfuric acid/alpha-pinene oxidation products at the CERN CLOUD chamber(AIP Publishing, 2013) Tröstl, Jasmin; Bianchi, Federico; Kürten, Andreas; Rondo, Linda; Simon, Mario; Sarnela, Nina; Jokinen, Tuija; Heinritzi, Martin; Dommen, Josef; Kirkby, Jasper; Weingartner, Ernest; Baltensperger, Urs; DeMott, Paul J.; O'Dowd, Colin D.The role of α-pinene in aerosol nucleation and growth was investigated using the CERN CLOUD chamber, a nano scanning mobility particle sizer (nanoSMPS) and several condensation particle counters (CPCs) with different diameter cut-offs. Different oxidation conditions for α-pinene - OH⋅ vs. ozone oxidation - were considered to investigate their contributions to particle nucleation and growth. Results from the latest CERN experiment from fall 2012 (CLOUD 7) are presented.04B - Beitrag KonferenzschriftPublikation Laboratory observation of oligomers in the aerosol from isoprene/NOₓ photooxidation(Wiley, 2006) Dommen, Josef; Metzger, Axel; Duplissy, Jonathan; Kalberer, Markus; Alfarra, M. Rami; Gascho, Astrid; Weingartner, Ernest; Prévôt, André S.H.; Verheggen, Bart; Baltensperger, UrsCompounds assigned to be oxidation products of isoprene (2-methyl-1,3-butadiene) have recently been observed in ambient aerosols, suggesting that isoprene might play an important role in secondary organic aerosol (SOA) formation due to its large global source strength. SOA yields from photooxidation of isoprene and NOₓ in a chamber agree fairly well with previous data. Matrix assisted laser desorption/ionization mass spectrometry showed the formation of high molecular weight compounds over the course of 15-hour experiments. Concurrently, the volatility of the SOA decreased markedly as observed by a tandem differential mobility analyzer. The volume fraction remaining of SOA at 150°C increased steadily from 5 to 25% during the same experiments. These observations are attributed to oligomerization reactions occurring in the aerosol phase. Under dry conditions a lower volatility was observed.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Online gas and aerosol measurement of water soluble carboxylic acids in Zurich(Wiley, 2006) Fisseha, Rebeka; Dommen, Josef; Gäggeler, Kathrin; Weingartner, Ernest; Samburova, Vera; Kalberer, Markus; Baltensperger, UrsWe discuss the diurnal and seasonal variability of low molecular weight organic acids in Zurich city on the basis of online quasi‐continuous measurement in the gas and aerosol phase using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to ion chromatography. The measurements were performed during August–September 2002 and March 2003. Acetic acid exhibited the highest concentration in the gas phase during all the measurement periods, followed by formic acid. Oxalic acid was predominantly found in the aerosol phase and often below the detection limit in the gas phase. In addition, filter samples were analyzed using ion chromatography–mass spectrometry (IC‐MS) to provide more information on organic acids in the aerosol phase. From the offline IC‐MS measurements, 20 monocarboxylic, dicarboxylic, and tricarboxylic acids were determined. In addition, more than 20 different masses were detected with the MS; however, identification of the organic acids was not possible. The sum of the carboxylic acids contributed on average 2% to the water soluble organic carbon (WSOC). The fraction of dicarboxylic acids to the WSOC was higher in summer compared to winter suggesting that dicarboxylic acids are mainly a result of photochemical reactions in summer whereas in winter they mainly result from primary sources.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Seasonal and diurnal characteristics of water soluble inorganic compounds in the gas and aerosol phase in the Zurich area(Copernicus, 2006) Fisseha, Rebeka; Dommen, Josef; Gutzwiller, Lukas; Weingartner, Ernest; Gysel, Martin; Emmenegger, C.; Kalberer, Markus; Baltensperger, UrsGas and aerosol samples were taken using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to ion chromatography (IC) in the city of Zurich, Switzerland from August to September 2002 and in March 2003. Major water soluble inorganic ions; nitrate, sulfate, and nitrite were analyzed online with a time resolution of two hours for the gas and aerosol phase. The fraction of water soluble inorganic anions in PM10 varied from 15% in August to about 38% in March. Seasonal and diurnal variations of nitrate in the gas and aerosol phase were observed with more than 50% of the total nitrate in the gas phase during August and more than 80% of nitrate in the aerosol phase during March exceeding the concentration of sulfate by a factor of 2. Aerosol sulfate, on the other hand, did not show significant variability with season. However, in the gas phase, the SO2 concentration was 6.5 times higher in winter than in summer. Nitrous acid (HONO) also showed a diurnal variation in both the gas and aerosol phase with the lowest concentration (0.2–0.6 µg/m³) in the afternoon. The primary pollutants, NO, CO and SO2 mixing ratios were often at their highest between 04:00–10:00 local time due to the build up of fresh vehicle emission under a nocturnal inversion.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Ion-induced nucleation of pure biogenic particles(Springer, 26.05.2016) Kirby, Jasper; Duplissy, Jonathan; Sengupta, Kamalika; Frege, Carla; Gordon, Hamish; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill; Dias, Antonio; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty; Rap, Alexandru; Richards, Nigel A.D.; Riipinen, Ilona; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander L.; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Carslaw, Kenneth S.; Curtius, JoachimAtmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Cloud forming potential of secondary organic aerosol under near atmospheric conditions(Wiley, 2008) Duplissy, Jonathan; Gysel, Martin; Alfarra, M. Rami; Dommen, Josef; Metzger, Axel; Prévôt, André S.H.; Weingartner, Ernest; Laaksonen, Ari; Raatikainen, Tomi; Good, Nicholas; Turner, S. Fiona; McFiggans, Gordon; Baltensperger, UrsCloud droplets form by nucleation on atmospheric aerosol particles. Populations of such particles invariably contain organic material, a major source of which is thought to be condensation of photo‐oxidation products of biogenic volatile organic compounds (VOCs). We demonstrate that smog chamber studies of the formation of such biogenic secondary organic aerosol (SOA) formed during photo‐oxidation must be conducted at near atmospheric concentrations to yield atmospherically representative particle composition, hygroscopicity and cloud‐forming potential. Under these conditions, the hygroscopicity measured at 95% relative humidity can be used reliably to predict the CCN activity of the SOA particles by assuming droplet surface tension of pure water. We also show that the supersaturation required to activate a given size of particle decreases with age.01A - Beitrag in wissenschaftlicher Zeitschrift