Hochschule für Life Sciences FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/22

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Vorschaubild
    Publikation
    Towards a better understanding of solid dispersions in aqueous environment by a fluorescence quenching approach
    (Elsevier, 25.10.2018) Jankovic, Sandra; Kuentz, Martin; Aleandri, Simone
    Solid dispersions (SDs) represent an important formulation technique to achieve supersaturation in gastro-intestinal fluids and to enhance absorption of poorly water-soluble drugs. Extensive research was leading to a rather good understanding of SDs in the dry state, whereas the complex interactions in aqueous medium are still challenging to analyze. This paper introduces a fluorescence quenching approach together with size-exclusion chromatography to study drug and polymer interactions that emerge from SDs release testing in aqueous colloidal phase. Celecoxib was used as a model drug as it is poorly water-soluble and also exhibits native fluorescence so that quenching experiments were enabled. Different pharmaceutical polymers were evaluated by the (modified) Stern-Volmer model, which was complemented by further bulk analytics. Drug accessibility by the quencher and its affinity to celecoxib were studied in physical mixtures as well as with in SDs. The obtained differences enabled important molecular insights into the different formulations. Knowledge of relevant drug-polymer interactions and the amount of drug embedded into polymer aggregates in the aqueous phase is of high relevance for understanding of SD performance. The novel fluorescence quenching approach is highly promising for future research and it can provide guidance in early formulation development.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    The quest for exceptional drug solubilization in diluted surfactant solutions and consideration of residual solid state
    (Elsevier, 2017) Saal, Wiebke; Alsenz, Jochem; Wyttenbach, Nicole; Kuentz, Martin
    Solubility screening in different surfactant solutions is an important part of pharmaceutical profiling. A particular interest is in low surfactant concentrations that mimic the dilution of an oral dosage form. Despite of intensive previous research on solubilization in micelles, there is only limited data available at low surfactant concentrations and generally missing is a physical state analysis of the residual solid. The present work therefore studied 13 model drugs in 6 different oral surfactant solutions (0.5%, w/w) by concomitant X-ray diffraction (XRPD) analysis to consider effects on solvent-mediated phase transformations. A particular aspect was potential occurrence of exceptionally high drug solubilization. As a result, general solubilization correlations were observed especially between surfactants that share chemical similarity. Exceptional solubility enhancement of several hundred-fold was evidenced in case of sodium dodecyl sulfate solutions with dipyridamole and progesterone. Furthermore, carbamazepine and testosterone showed surfactant-type dependent hydrate formation. The present results are of practical relevance for an optimization of surfactant screenings in preformulation and early development and provide a basis for mechanistic modeling of surfactant effects on solubilization and solid state modifications.
    01A - Beitrag in wissenschaftlicher Zeitschrift