Listen
2 Ergebnisse
Bereich: Suchergebnisse
Publikation Incineration of organic solar cells: Efficient end of life management by quantitative silver recovery(Royal Society of Chemistry, 2016) Sondergaard, Roar R.; Zimmermann, Yannick; Lenz, Markus; Krebs, Frederik; Martinez Espinosa, NievesRecovery of silver from the electrodes of roll-to-roll processed org. solar cells after incineration has been performed quant. by extn. with nitric acid. This procedure is more than 10 times faster than previous reports and the amt. of acid needed for the extn. is reduced by a factor of 100-150. LCA studies show that the resulting environmental impacts from silver extn. of incinerated ashes are more favorable on almost all std. factors compared to extn. from shredded org. solar cells. The so lessened environmental impacts by efficient recovery fully justify the use of Ag as an electrode in scaled prodn. of org. solar cells.01A - Beitrag in wissenschaftlicher ZeitschriftPublikation Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil(Royal Society of Chemistry, 2016) Martinez Espinosa, Nieves; Zimmermann, Yannick; dos Reis Benatto, Gisele A.; Lenz, Markus; Krebs, FrederikThe emission of silver and zinc to the aq. environment (rain, fog, dew) from polymer solar cells installed outdoors is presented. Studies included pristine solar cells and solar cells subjected to mech. damage under natural weather conditions in Denmark. We find the emission of silver and zinc to the environment through pptd. water for damaged solar cells, and also obsd. failure and emission from an initially undamaged device in an expt. that endured for 6 mo. In the case of the damaged cells, we found that the drinking water limits for Ag were only exceeded on a few single days. We also progressed our studies to include end-of-life management. To assess the implications of improper practices (uncontrolled disposal, landfilling) at the end-of-life, we buried different OPV types in intact and damaged forms in soil columns. In the case of high Ag emission (shredded cells), the potential for migration was confirmed, even though the soil was found to exhibit sequestration of silver. We conclude that recycling of Ag at the end-of-life is mandatory from an environmental point of view.01A - Beitrag in wissenschaftlicher Zeitschrift