Hochschule für Life Sciences FHNW

Dauerhafte URI für den Bereichhttps://irf.fhnw.ch/handle/11654/22

Listen

Bereich: Suchergebnisse

Gerade angezeigt 1 - 10 von 11
  • Vorschaubild
    Publikation
    Evaluierung von Carbonatpuffer für die Wirkstofffreisetzung aus Tabletten
    (Hochschule für Life Sciences FHNW, 2024) Loureiro Cunha, Margarida; Lanz, Michael; Imanidis, Georgios
    11 - Studentische Arbeit
  • Vorschaubild
    Publikation
    Miniaturization of stent prototypes by µSLM
    (Hochschule für Life Sciences FHNW, 2024) Wasmer, Larissa; de Wild, Michael; Seiler, Daniel; Politecnico di Torino
    11 - Studentische Arbeit
  • Vorschaubild
    Publikation
    Atlas-Based Segmentation Algorithm
    (Hochschule für Life Sciences FHNW, 2024) Kohler, Roger; Vogel, Dorian; Linköpings Universitet
    11 - Studentische Arbeit
  • Vorschaubild
    Publikation
    Quantitative assessment of repetitive lower limb movements used in the MDS-UPDRS-III scale in healthy subjects
    (Hochschule für Life Sciences FHNW, 2024) Hunziker, Sven; Hemm-Ode, Simone; Vogel, Dorian; Kalt, Denise; Kantonsspital Baden AG, Baden AG
    11 - Studentische Arbeit
  • Vorschaubild
    Publikation
    Robustness comparison of optimization techniques in Intensity Modulated Proton Therapy (IMPT)
    (Hochschule für Life Sciences FHNW, 2024) Hagmann, Virgile; Knopf, Antje; Paul Scherrer Institut, Villigen
    11 - Studentische Arbeit
  • Vorschaubild
    Publikation
    Stimmanalyse zur Evaluierung des Leidens bei Patienten mit Krebs
    (Hochschule für Life Sciences FHNW, 2024) Dere, Türkmen; Hemm-Ode, Simone; Kantonsspital Baselland, Liestal; Palliativzentrum Hildegard, Basel
    11 - Studentische Arbeit
  • Vorschaubild
    Publikation
    Analysis of Patient Reported Outcome Measures (PROMs)
    (Hochschule für Life Sciences FHNW, 2024) Schlumpf, Oliver; Kahraman, Abdullah; Luzerner Kantonsspital (LUKS); Swiss Sarcoma Network (SSN)
    11 - Studentische Arbeit
  • Vorschaubild
    Publikation
    Investigation of different quality assessment procedures for fast and reliable validation of CBCT-based synthetic CTs
    (Hochschule für Life Sciences FHNW, 2024) Maurenbrecher, Joakim; Knopf, Antje; Paul Scherrer Institut, Villigen
    11 - Studentische Arbeit
  • Vorschaubild
    Publikation
    A survey of practice patterns for real-time intrafractional motion-management in particle therapy
    (Elsevier, 26.04.2023) Zhang, Ye; Trnkova, Petra; Toshito, Toshiyuki; Heijmen, Ben; Richter, Christian; Aznar, Marianne; Albertini, Francesca; Bolsi, Alexandra; Daartz, Juliane; Bertholet, Jenny; Knopf, Antje
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Vorschaubild
    Publikation
    Clinical necessity of multi-image based (4DMIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy – A comprehensive review
    (Elsevier, 02/2022) Czerska, Katarzyna; Fracchiolla, Francesco; Graeff, Christian; Molinelli, Silvia; Rinaldi, Ilaria; Rucincki, Antoni; Sterpin, Edmond; Stützer, Kristin; Trnkova, Petra; Zhang, Ye; Chang, Joe Y; Giap, Huan; Liu, Wei; Schild, Steven E; Simone, Charles B.; Lomax, Antony J; Meijers, Arturs; Knopf, Antje
    4D multi-image-based (4D MIB) optimization is a form of robust optimization where different uncertainty scenarios, due to anatomy variations, are considered via multiple image sets (e.g., 4DCT). In this review, we focused on providing an overview of different 4DMIB optimization implementations, introduced var- ious frameworks to evaluate the robustness of scanned particle therapy affected by breathing motion and summarized the existing evidence on the necessity of using 4DMIB optimization clinically. Expected potential benefits of 4DMIB optimization include more robust and/or interplay-effect-resistant doses for the target volume and organs-at-risk for indications affected by anatomical variations (e.g., breathing, peristalsis, etc.). Although considerable literature is available on the research and technical aspects of 4DMIB, clinical studies are rare and often contain methodological limitations, such as, limited patient number, motion amplitude, motion and delivery time structure considerations, number of repeat CTs, etc. Therefore, the data are not conclusive. In addition, multiple studies have found that robust 3D opti- mized plans result in dose distributions within the set clinical tolerances and, therefore, are suitable for a treatment of moving targets with scanned particle therapy. We, therefore, consider the clinical necessity of 4D MIB optimization, when treating moving targets with scanned particle therapy, as still to be demonstrated.
    01A - Beitrag in wissenschaftlicher Zeitschrift