Bayer-Oglesby, Lucy

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Bayer-Oglesby
Vorname
Lucy
Name
Bayer-Oglesby, Lucy

Suchergebnisse

Gerade angezeigt 1 - 10 von 28
Vorschaubild nicht verfügbar
Publikation

Long-term exposure models for traffic related NO2 across geographically diverse areas over separate years

2012, Sally Liu, L.-J., Tsai, Ming-Yi, Keidel, Dirk, Gemperli, Armin, Ineichen, Alex, Hazenkamp-von Arx, Marianne, Bayer-Oglesby, Lucy, Rochat, Thierry, Künzli, Nino, Ackermann-Liebrich, Ursula, Straehl, Peter, Schwartz, Joel, Schindler, Christian

Although recent air pollution epidemiologic studies have embraced land-use regression models for estimating outdoor traffic exposure, few have examined the spatio-temporal variability of traffic related pollution over a long term period and the optimal methods to take these factors into account for exposure estimates. We used home outdoor NO2 measurements taken from eight geographically diverse areas to examine spatio-temporal variations, construct, and evaluate models that could best predict the within-city contrasts in observations. Passive NO2 measurements were taken outside of up to 100 residences per area over three seasons in 1993 and 2003 as part of the Swiss cohort study on air pollution and lung and heart disease in adults (SAPALDIA). The spatio-temporal variation of NO2 differed by area and year. Regression models constructed using the annual NO2 means from central monitoring stations and geographic parameters predicted home outdoor NO2 levels better than a dispersion model. However, both the regression and dispersion models underestimated the within-city contrasts of NO2 levels. Our results indicated that the best models should be constructed for individual areas and years, and would use the dispersion estimates as the urban background, geographic information system (GIS) parameters to enhance local characteristics, and temporal and meteorological variables to capture changing local dynamics. Such models would be powerful tools for assessing health effects from long-term exposure to air pollution in a large cohort

Vorschaubild nicht verfügbar
Publikation

Pflege durch Angehörige

2010, Zumbrunn, Andrea, Bayer-Oglesby, Lucy, Kocher, Gerhard, Oggier, Willy

Lade...
Vorschaubild
Publikation

Characterization of source-specific air pollution exposure for a large population-based Swiss cohort (SAPALDIA)

2007, Liu, L.-J. Sally, Curjuric, Ivan, Keidel, Dirk, Heldstab, Jürg, Künzli, Nino, Bayer-Oglesby, Lucy, Ackermann-Liebrich, Ursula, Schindler, Christian

Background: Although the dispersion model approach has been used in some epidemiologic studies to examine health effects of traffic-specific air pollution, no study has evaluated the model predictions vigorously. Methods: We evaluated total and traffic-specific particulate matter < 10 and < 2.5 microm in aero-dynamic diameter (PM(10), PM(2.5)), nitrogren dioxide, and nitrogen oxide concentrations predicted by Gaussian dispersion models against fixed-site measurements at different locations, including traffic-impacted, urban-background, and alpine settings between and across cities. The model predictions were then used to estimate individual subjects' historical and cumulative exposures with a temporal trend model. Results: Modeled PM(10) and NO(2) predicted at least 55% and 72% of the variability of the measured PM(10) and NO(2), respectively. Traffic-specific pollution estimates correlated with the NO(x) measurements (R(2) >or=0.77) for background sites but not for traffic sites. Regional background PM(10) accounted for most PM(10) mass in all cities. Whereas traffic PM(10) accounted for < 20% of the total PM(10), it varied significantly within cities. The modeling error for PM(10) was similar within and between cities. Traffic NO(x) accounted for the majority of NO(x) mass in urban areas, whereas background NO(x) accounted for the majority of NO(x) in rural areas. The within-city NO(2) modeling error was larger than that between cities. Conclusions: The dispersion model predicted well the total PM(10), NO(x), and NO(2) and traffic-specific pollution at background sites. However, the model underpredicted traffic NO(x) and NO(2) at traffic sites and needs refinement to reflect local conditions. The dispersion model predictions for PM(10) are suitable for examining individual exposures and health effects within and between cities.

Vorschaubild nicht verfügbar
Publikation

Living near main streets and respiratory symptoms in adults. the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults

2006-10-10, Bayer-Oglesby, Lucy, Schindler, Christian, Hazenkamp-von Arx, Marianne E., Braun-Fahrländer, Charlotte, Keidel, Dirk, Rapp, Regula, Künzli, Nino, Braendli, Otto, Burdet, Luc, Sally Liu, L-J, Leuenberger, Philippe, Ackermann-Liebrich, Ursula

The Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA), conducted in 1991 (SAPALDIA 1) in eight areas among 9,651 randomly selected adults aged 18-60 years, reported associations among the prevalence of respiratory symptoms, nitrogen dioxide, and particles with an aerodynamic diameter of less than 10 microg/m3. Later, 8,047 subjects reenrolled in 2002 (SAPALDIA 2). The effects of individually assigned traffic exposures on reported respiratory symptoms were estimated, while controlling for socioeconomic and exposure- and health-related factors. The risk of attacks of breathlessness increased for all subjects by 13% (95% confidence interval: 3, 24) per 500-m increment in the length of main street segments within 200 m of the home and decreased in never smokers by 12% (95% confidence interval: 0, 22) per 100-m increment in distance from home to a main street. Living within 20 m of a main street increased the risks of regular phlegm by 15% (95% confidence interval: 0, 31) and wheezing with breathing problems by 34% (95% confidence interval: 0, 79) in never smokers. In 2002, the effects related to road distance were different from those in 1991, which could be due to changes in the traffic pollution mixture. These findings among a general population provide strong confirmation that living near busy streets leads to adverse respiratory health effects.

Vorschaubild nicht verfügbar
Publikation

Validity of Ambient Levels of Fine Particles as Surrogate for Personal Exposure to Outdoor Air Pollution—Results of the European EXPOLIS-EAS Study (Swiss Center Basel)

2011-12-27, Bayer-Oglesby, Lucy, Künzli, Nino, Röösli, Martin, Braun-Fahrländer, Charlotte, Mathys, Patrick, Stern, Willem, Jantunen, Matti, Kousa, Anu

To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM2.5 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rSpearman (Sp) = 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.

Vorschaubild nicht verfügbar
Publikation

Grenzüberschreitende Zusammenarbeit Deutschland — Schweiz im Gesundheitswesen. Evaluation des Pilotprojektes in der Grenzregion Basel-Stadt / Basel-Landschaft / Landkreis Lörrach (Phase I) (Obsan Bericht 37)

2010, Zumbrunn, Andrea, Bayer-Oglesby, Lucy, Roth, Maik

Vorschaubild nicht verfügbar
Publikation

Annoyance due to air pollution in Europe

2007, Jacquemin, Bénédicte, Sunyer, Jordi, Forsberg, Bertil, Götschi, Thomas, Bayer-Oglesby, Lucy, Ackermann-Liebrich, Ursula, de Marco, Roberto, Heinrich, Joachim, Jarvis, Deborah, Torén, Kjell, Künzli, Nino

Background Annoyance due to air pollution is a subjective score of air quality, which has been incorporated into the National Environmental monitoring of some countries. The objectives of this study are to describe the variations in annoyance due to air pollution in Europe and its individual and environmental determinants. Methods This study took place in the context of the European Community Respiratory Health Survey II (ECRHS II) that was conducted during 1999–2001. It included 25 centres in 12 countries and 7867 randomly selected adults from the general population. Annoyance due to air pollution was self-reported on an 11-point scale. Annual mean mass concentration of fine particles (PM2.5) and its sulphur (S) content were measured in 21 centres as a surrogate of urban air pollution. Results Forty-three per cent of participants reported moderate annoyance (1–5 on the scale) and 14% high annoyance (≥6) with large differences across centres (2–40% of high annoyance). Participants in the Northern European countries reported less annoyance. Female gender, nocturnal dyspnoea, phlegm and rhinitis, self-reported car and heavy vehicle traffic in front of the home, high education, non-smoking and exposure to environmental tobacco smoke were associated with higher annoyance levels. At the centre level, adjusted means of annoyance scores were moderately associated with sulphur urban levels (slope 1.43 μg m−3, standard error 0.40, r = 0.61). Conclusions Annoyance due to air pollution is frequent in Europe. Individuals’ annoyance may be a useful measure of perceived ambient quality and could be considered a complementary tool for health surveillance.

Vorschaubild nicht verfügbar
Publikation

Pflegebedürftigkeit und Langzeitpflege im Alter. Aktualisierte Szenarien für die Schweiz

2011, Höpflinger, François, Bayer-Oglesby, Lucy, Zumbrunn, Andrea

Buchreihe des Schweizerischen Gesundheitsobservatoriums

Vorschaubild nicht verfügbar
Publikation

Improvements in PM10 Exposure and Reduced Rates of Respiratory Symptoms in a Cohort of Swiss Adults (SAPALDIA)

2009, Schindler, Christian, Keidel, Dirk, Gerbase, Margaret W., Zemp, Elisabeth, Bettschart, Robert, Brändli, Otto, Brutsche, Martin H., Burdet, Luc, Karrer, Werner, Knöpfli, Bruno, Pons, Marco, Rapp, Regula, Bayer-Oglesby, Lucy, Künzli, Nino, Schwartz, Joel, Liu, Lee-Jane S., Ackermann-Liebrich, Ursula, Rochat, Thierry

Rationale: Reductions in mortality following improvements in air quality were documented by several studies, and our group found, in an earlier analysis, that decreasing particulate levels attenuate lung function decline in adults. Objectives: We investigated whether decreases in particulates with an aerodynamic diameter of less than 10 microm (PM10) were associated with lower rates of reporting respiratory symptoms (i.e., decreased morbidity) on follow-up. Methods: The present analysis includes 7,019 subjects who underwent detailed baseline examinations in 1991 and a follow-up interview in 2002. Each subject was assigned model-based estimates of average PM10 during the 12 months preceding each health assessment and the difference was used as the exposure variable of interest (DeltaPM10). Analyses were stratified by symptom status at baseline and associations between DeltaPM10 and change in symptom status during follow-up were adjusted for important baseline characteristics, smoking status at follow-up, and season. We then estimated adjusted odds ratios for symptoms at follow-up and numbers of symptomatic cases prevented due to the observed reductions in PM10. Measurements and main results: Residential exposure to PM10 was lower in 2002 than in 1991 (mean decline 6.2 microg/m3; SD = 3.9 microg/m3). Estimated benefits (per 10,000 persons) attributable to the observed changes in PM10-levels were: 259 (95% confidence interval [CI]: 102-416) fewer subjects with regular cough, 179 (95% CI, 30-328) fewer subjects with chronic cough or phlegm and 137 (95% CI, 9-266) fewer subjects with wheezing and breathlessness. Conclusions: Reductions in particle levels in Switzerland over the 11-year follow-up period had a beneficial effect on respiratory symptoms among adults.

Vorschaubild nicht verfügbar
Publikation

Reduced exposure to PM10 and attenuated age-related decline in lung function

2007, Downs, Sara H., Schindler, Christian, Liu, L.-J. Sally, Keidel, Dirk, Bayer-Oglesby, Lucy, Brutsche, Martin H., Gerbase, Margaret W., Keller, Roland, Künzli, Nino, Leuenberger, Philippe, Probst-Hensch, Nicole M., Tschopp, Jean-Marie, Zellweger, Jean-Pierre, Rochat, Thierry, Schwartz, Joel, Ackermann-Liebrich, Ursula

Background: Air pollution has been associated with impaired health, including reduced lung function in adults. Moving to cleaner areas has been shown to attenuate adverse effects of air pollution on lung function in children but not in adults. Methods: We conducted a prospective study of 9651 adults (18 to 60 years of age) randomly selected from population registries in 1990 and assessed in 1991, with 8047 participants reassessed in 2002. There was complete information on lung volumes and flows (e.g., forced vital capacity [FVC], forced expiratory volume in 1 second [FEV1], FEV1 as a percentage of FVC, and forced expiratory flow between 25 and 75% of the FVC [FEF25–75]), smoking habits, and spatially resolved concentrations of particulate matter that was less than 10 μm in aerodynamic diameter (PM10) from a validated dispersion model assigned to residential addresses for 4742 participants at both the 1991 and the 2002 assessments and in the intervening years. Results: Overall exposure to individual home outdoor PM10 declined over the 11-year follow-up period (median, −5.3 μg per cubic meter; interquartile range, −7.5 to −4.2). In mixed-model regression analyses, with adjustment for confounders, PM10 concentrations at baseline, and clustering within areas, there were significant negative associations between the decrease in PM10 and the rate of decline in FEV1 (P=0.045), FEV1 as a percentage of FVC (P=0.02), and FEF25–75 (P=0.001). The net effect of a decline of 10 μg of PM10 per cubic meter over an 11-year period was to reduce the annual rate of decline in FEV1 by 9% and of FEF25–75 by 16%. Cumulative exposure in the interval between the two examinations showed similar associations. Conclusions: Decreasing exposure to airborne particulates appears to attenuate the decline in lung function related to exposure to PM10. The effects are greater in tests reflecting small-airway function.