Erath, Alexander

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Erath
Vorname
Alexander
Name
Erath, Alexander

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
Vorschaubild nicht verfügbar
Publikation

Introducing the pedestrian accessibility tool. Walkability analysis for a geographic information system

2017, Erath, Alexander, van Eggermond, Michael, Ordóñez, Sergio A., Axhausen, Kay W.

The indexes for walkability proposed so far refer generally to the closest amenities and public transport stops and the existing network structure. The weights of the attributes do not reflect the independently measured preferences of the users and residents. Design attributes such as the location and type of crossings and walkway design features are usually surveyed in walkability audits. However, such attributes are usually not considered when pedestrian walksheds or other accessibility-based walkability indexes are calculated. Nevertheless, these design attributes are very relevant for actual planning decisions. The proposed walkability index can be behaviorally calibrated, has been implemented as a geographic information system tool, and is published as open source software. The pedestrian accessibility tool allows the evaluation of existing and future urban plans with regards to walkability. The tool calculates Hansen-based accessibility indicators with the use of a customizable specification of the generalized walking costs, and it incorporates user-defined weights of destination attractiveness. The basic user workflow of the tool is summarized. Three case studies show real-world applications of the tool to support the planning of pedestrian infrastructure in an urban context. With indications of potential areas of improvement that have been reported by pilot users working in an urban planning department, hints are also given for future research.

Lade...
Vorschaubild
Publikation

Pedestrian and transit accessibility on a micro level. Results and challenges

2016, van Eggermond, Michael, Erath, Alexander

In thispaper, we connect two notions of accessibility that are more often than not considered separately: pedestrian accessibility and transit accessibility. We move away from the notion of zonal accessibility and measure fine-grained accessibility using door-to-door travel times. Two pedestrian networks are compared to a baseline scenario considering Euclidean distances for a large metropolitan area in which each individual building is considered as an activity opportunity. It is shown that pedestrian accessibility to jobs differs when pedestrian distances are approximated with different networks that are more representative of reality. Stop-to-stop public transport travel times are extracted from an agent-based simulation of public transport smart card data. The effect of less-than-optimal connections from transit to the pedestrian network, a local measurement, can be seen when calculating the accessibility to all destinations in the city. We suggest moving away from Euclidean-based distance analyses. Limitations can be found in the data available; the connection of buildings to the network becomes important, as does the inclusion of pedestrian crossings. For an inclusive accessibility measure, it will be necessary to calculate generalized costs for pedestrians and generate different pedestrian networks that reflect the limitations of different user groups.