Brodbeck, Dominique

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Brodbeck
Vorname
Dominique
Name
Brodbeck, Dominique

Suchergebnisse

Gerade angezeigt 1 - 6 von 6
  • Publikation
    Solving the explainable AI conundrum by bridging clinicians’ needs and developers’ goals
    (Nature, 22.05.2023) Bienefeld, Nadine; Boss, Jens Michael; Lüthy, Rahel; Brodbeck, Dominique; Azzati, Jan; Blaser, Mirco; Willms, Jan; Keller, Emanuela [in: npj Digital Medicine]
    Explainable artificial intelligence (XAI) has emerged as a promising solution for addressing the implementation challenges of AI/ML in healthcare. However, little is known about how developers and clinicians interpret XAI and what conflicting goals and requirements they may have. This paper presents the findings of a longitudinal multi-method study involving 112 developers and clinicians co-designing an XAI solution for a clinical decision support system. Our study identifies three key differences between developer and clinician mental models of XAI, including opposing goals (model interpretability vs. clinical plausibility), different sources of truth (data vs. patient), and the role of exploring new vs. exploiting old knowledge. Based on our findings, we propose design solutions that can help address the XAI conundrum in healthcare, including the use of causal inference models, personalized explanations, and ambidexterity between exploration and exploitation mindsets. Our study highlights the importance of considering the perspectives of both developers and clinicians in the design of XAI systems and provides practical recommendations for improving the effectiveness and usability of XAI in healthcare.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    RWD-Cockpit. Application for quality assessment of real-world data
    (JMIR Publications, 18.10.2022) Degen, Markus; Babrak, Lmar; Smakaj, Erand; Agac, Teyfik; Asprion, Petra; Grimberg, Frank; Van der Werf, Daan; Van Ginkel, Erwin Willem; Tosoni, Deniz David; Clay, Ieuan; Brodbeck, Dominique; Natali, Eriberto; Schkommodau, Erik; Miho, Enkelejda [in: JMIR Formative Research]
    Digital technologies are transforming the health care system. A large part of information is generated as real-world data (RWD). Data from electronic health records and digital biomarkers have the potential to reveal associations between the benefits and adverse events of medicines, establish new patient-stratification principles, expose unknown disease correlations, and inform on preventive measures. The impact for health care payers and providers, the biopharmaceutical industry, and governments is massive in terms of health outcomes, quality of care, and cost. However, a framework to assess the preliminary quality of RWD is missing, thus hindering the conduct of population-based observational studies to support regulatory decision-making and real-world evidence.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    RWD-Cockpit: application for quality assessment of real-world data
    (JMIR Publications, 2022) Babrak, Lmar; Smakaj, Erand; Agac, Teyfik; Asprion, Petra; Grimberg, Frank; Van der Werf, Daan; van Ginkel, Erwin Willem; Tosoni, Deniz David; Clay, Ieuan; Degen, Markus; Brodbeck, Dominique; Natali, Eriberto Noel; Schkommodau, Erik; Miho, Enkelejda [in: JMIR Formative Research]
    Background: Digital technologies are transforming the health care system. A large part of information is generated as real-world data (RWD). Data from electronic health records and digital biomarkers have the potential to reveal associations between the benefits and adverse events of medicines, establish new patient-stratification principles, expose unknown disease correlations, and inform on preventive measures. The impact for health care payers and providers, the biopharmaceutical industry, and governments is massive in terms of health outcomes, quality of care, and cost. However, a framework to assess the preliminary quality of RWD is missing, thus hindering the conduct of population-based observational studies to support regulatory decision-making and real-world evidence. Objective: To address the need to qualify RWD, we aimed to build a web application as a tool to translate characterization of some quality parameters of RWD into a metric and propose a standard framework for evaluating the quality of the RWD. Methods: The RWD-Cockpit systematically scores data sets based on proposed quality metrics and customizable variables chosen by the user. Sleep RWD generated de novo and publicly available data sets were used to validate the usability and applicability of the web application. The RWD quality score is based on the evaluation of 7 variables: manageability specifies access and publication status; complexity defines univariate, multivariate, and longitudinal data; sample size indicates the size of the sample or samples; privacy and liability stipulates privacy rules; accessibility specifies how the data set can be accessed and to what granularity; periodicity specifies how often the data set is updated; and standardization specifies whether the data set adheres to any specific technical or metadata standard. These variables are associated with several descriptors that define specific characteristics of the data set. Results: To address the need to qualify RWD, we built the RWD-Cockpit web application, which proposes a framework and applies a common standard for a preliminary evaluation of RWD quality across data sets—molecular, phenotypical, and social—and proposes a standard that can be further personalized by the community retaining an internal standard. Applied to 2 different case studies—de novo–generated sleep data and publicly available data sets—the RWD-Cockpit could identify and provide researchers with variables that might increase quality Conclusions: The results from the application of the framework of RWD metrics implemented in the RWD-Cockpit application suggests that multiple data sets can be preliminarily evaluated in terms of quality using the proposed metrics. The output scores—quality identifiers—provide a first quality assessment for the use of RWD. Although extensive challenges remain to be addressed to set RWD quality standards, our proposal can serve as an initial blueprint for community efforts in the characterization of RWD quality for regulated settings.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Cloud-based three-dimensional pattern analysis and classification of proximal humeral fractures – A feasibility study
    (EasyChair, 2022) Kalt, Denise; Gerber Popp, Ariane; Degen, Markus; Brodbeck, Dominique; Coigny, Florian; Suter, Thomas; Schkommodau, Erik; Rodriguez y Baena, Ferdinando; Giles, Joshua W.; Stindel, Eric [in: Proceedings of the 20th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery]
    For the complex clinical issue of treatment decision for proximal humeral fractures, dedicated software based on three-dimensional (3D) computer tomography (CT) models would potentially allow for a more accurate fracture classification and help to plan the surgical strategy needed to reduce the fracture in the operating theatre. The aim of this study was to elaborate the feasibility of implementation of such software using state-of-the-art cloud technology to enable access to its functionalities in a distributed manner. Feasibility was studied by implementation of a prototype application, which was tested in a usability study with five biomedical engineers. Implementation of a cloud-based solution was feasible using state-of-the-art technology under application of a specific software architectural approach allowing to distribute computational load between client and server. Mean System Usability Scale (SUS) Score for the developed application was determined to be 63 (StDev 20.4). These results can be interpreted as a medium low usability with high standard deviation of the measured SUS score. We conclude that more test subjects should be included in future studies and the developed application should be evaluated with a representative user group such as orthopaedic shoulder surgeons in a clinical setting.
    04B - Beitrag Konferenzschrift
  • Publikation
    The energy consumption of radiology. Energy- and cost-saving opportunities for CT and MRI operation
    (Radiological Society of North America, 24.03.2020) Heye, Tobias; Knoerl, Roland; Wehrle, Thomas; Mangold, Daniel; Cerminara, Alessandro; Loser, Michael; Plumeyer, Martin; Merkle, Elmar; Degen, Markus; Lüthy, Rahel; Brodbeck, Dominique [in: Radiology]
    Background Awareness of energy efficiency has been rising in the industrial and residential sectors but only recently in the health care sector. Purpose To measure the energy consumption of modern CT and MRI scanners in a university hospital radiology department and to estimate energy- and cost-saving potential during clinical operation. Materials and Methods Three CT scanners, four MRI scanners, and cooling systems were equipped with kilowatt-hour energy measurement sensors (2-Hz sampling rate). Energy measurements, the scanners’ log files, and the radiology information system from the entire year 2015 were analyzed and segmented into scan modes, as follows: net scan (actual imaging), active (room time), idle, and system-on and system-off states (no standby mode was available). Per-examination and peak energy consumption were calculated. Results The aggregated energy consumption imaging 40 276 patients amounted to 614 825 kWh, dedicated cooling systems to 492 624 kWh, representing 44.5% of the combined consumption of 1 107 450 kWh (at a cost of U.S. $199 341). This is equivalent to the usage in a town of 852 people and constituted 4.0% of the total yearly energy consumption at the authors' hospital. Mean consumption per CT examination over 1 year was 1.2 kWh, with a mean energy cost (±standard deviation) of $0.22 ± 0.13. The total energy consumption of one CT scanner for 1 year was 26 226 kWh ($4721 in energy cost). The net consumption per CT examination over 1 year was 3580 kWh, which is comparable to the usage of a two-person household in Switzerland; however, idle state consumption was fourfold that of net consumption (14 289 kWh). Mean MRI consumption over 1 year was 19.9 kWh per examination, with a mean energy cost of $3.57 ± 0.96. The mean consumption for a year in the system-on state was 82 174 kWh per MRI examination and 134 037 kWh for total consumption, for an energy cost of $24 127. Conclusion CT and MRI energy consumption is substantial. Considerable energy- and cost-saving potential is present during nonproductive idle and system-off modes, and this realization could decrease total cost of ownership while increasing energy efficiency.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    A mobile collaboration and decision support system for the medical emergency departement
    (SciTePress, 2012) Brodbeck, Dominique; Degen, Markus; Reiss, Maximilian; Conchon, Emmanuel; Correia, Carlos; Fred, Ana; Gamboa, Hugo [in: Proceedings of the International Conference on Health Informatics (HEALTHINF-2012)]
    A hospital emergency department is a complex work environment, where the availability of the right information at the right time is crucial for efficient and safe operation. The current technology in use for communication and information management is mostly based on telephones and stationary personal computers. Modern smartphones with their computational power, voice, image, and video capabilities have the potential to play a significant role in improving the flow of information in the emergency department. We developed a system that explicitly supports the work flows of an emergency department. In addition to mobile access to patient data and notifications about the availability of diagnostic findings, it provides the possibility to supply media captured on-site to the patient record, and directly supports the consultation process.
    04B - Beitrag Konferenzschrift